209 research outputs found

    Population Size, Sex and Purifying Selection: Comparative Genomics of Two Sister Taxa of the Wild Yeast Saccharomyces paradoxus

    Get PDF
    This study uses population genomic data to estimate demographic and selection parameters in two sister lineages of the wild yeast Saccharomyces paradoxus and compare their evolution. We first estimate nucleotide and recombinational diversities in each of the two lineages to infer their population size and frequency of sex and then analyze the rate of mutation accumulation since divergence from their inferred common ancestor to estimate the generation time and efficacy of selection. We find that one of the lineages has significantly higher silent nucleotide diversity and lower linkage disequilibrium, indicating a larger population with more frequent sexual generations. The same lineage also shows shorter generation time and higher efficacy of purifying selection, the latter consistent with the finding of larger population size and more frequent sex. Similar analyses are also performed on the ancestries of individual strains within lineages and we find significant differences between strains implying variation in rates of mitotic cell divisions. Our sample includes some strains originating in the Chernobyl nuclear-accident exclusion zone, which has been subjected to high levels of radiation for nearly 30 years now. We find no evidence, however, for increased rates of mutation. Finally, there is a positive correlation between rates of mutation accumulation and length of growing period, as measured by latitude of the place of origin of strains. Our study illustrates the power of genomic analyses in estimating population and life history parameters and testing predictions based on population genetic theory

    Population genomics of domestic and wild yeasts

    Get PDF
    The natural genetics of an organism is determined by the distribution of sequences of its genome. Here we present one- to four-fold, with some deeper, coverage of the genome sequences of over seventy isolates of the domesticated baker's yeast, _Saccharomyces cerevisiae_, and its closest relative, the wild _S. paradoxus_, which has never been associated with human activity. These were collected from numerous geographic locations and sources (including wild, clinical, baking, wine, laboratory and food spoilage). These sequences provide an unprecedented view of the population structure, natural (and artificial) selection and genome evolution in these species. Variation in gene content, SNPs, indels, copy numbers and transposable elements provide insights into the evolution of different lineages. Phenotypic variation broadly correlates with global genome-wide phylogenetic relationships however there is no correlation with source. _S. paradoxus_ populations are well delineated along geographic boundaries while the variation among worldwide _S. cerevisiae_ isolates show less differentiation and is comparable to a single _S. paradoxus_ population. Rather than one or two domestication events leading to the extant baker's yeasts, the population structure of _S. cerevisiae_ shows a few well defined geographically isolated lineages and many different mosaics of these lineages, supporting the notion that human influence provided the opportunity for outbreeding and production of new combinations of pre-existing variation

    Metabolic variation in natural populations of wild yeast

    Get PDF
    Ecological diversification depends on the extent of genetic variation and on the pattern of covariation with respect to ecological opportunities. We investigated the pattern of utilization of carbon substrates in wild populations of budding yeast Saccharomyces paradoxus. All isolates grew well on a core diet of about 10 substrates, and most were also able to grow on a much larger ancillary diet comprising most of the 190 substrates we tested. There was substantial genetic variation within each population for some substrates. We found geographical variation of substrate use at continental, regional, and local scales. Isolates from Europe and North America could be distinguished on the basis of the pattern of yield across substrates. Two geographical races at the North American sites also differed in the pattern of substrate utilization. Substrate utilization patterns were also geographically correlated at local spatial scales. Pairwise genetic correlations between substrates were predominantly positive, reflecting overall variation in metabolic performance, but there was a consistent negative correlation between categories of substrates in two cases: between the core diet and the ancillary diet, and between pentose and hexose sugars. Such negative correlations in the utilization of substrate from different categories may indicate either intrinsic physiological trade‐offs for the uptake and utilization of substrates from different categories, or the accumulation of conditionally neutral mutations. Divergence in substrate use accompanies genetic divergence at all spatial scales in S. paradoxus and may contribute to race formation and speciation

    AFLP analysis reveals high genetic diversity but low population structure in Coccidioides posadasiiisolates from Mexico and Argentina

    Get PDF
    BACKGROUND: Coccidioides immitis and C. posadasii cause coccidioidomycosis, a disease that is endemic to North and South America, but for Central America, the incidence of coccidioidomycosis has not been clearly established. Several studies suggest genetic variability in these fungi; however, little definitive information has been discovered about the variability of Coccidioides fungi in Mexico (MX) and Argentina (AR). Thus, the goals for this work were to study 32 Coccidioides spp. isolates from MX and AR, identify the species of these Coccidioides spp. isolates, analyse their phenotypic variability, examine their genetic variability and investigate the Coccidioides reproductive system and its level of genetic differentiation. METHODS: Coccidioides spp. isolates from MX and AR were taxonomically identified by phylogenetic inference analysis using partial sequences of the Ag2/PRA gene and their phenotypic characteristics analysed. The genetic variability, reproductive system and level of differentiation were estimated using AFLP markers. The level of genetic variability was assessed measuring the percentage of polymorphic loci, number of effective allele, expected heterocygosity and Index of Association (I(A)). The degree of genetic differentiation was determined by AMOVA. Genetic similarities among isolates were estimated using Jaccard index. The UPGMA was used to contsruct the corresponding dendrogram. Finally, a network of haplotypes was built to evaluate the genealogical relationships among AFLP haplotypes. RESULTS: All isolates of Coccidioides spp. from MX and AR were identified as C. posadasii. No phenotypic variability was observed among the C. posadasii isolates from MX and AR. Analyses of genetic diversity and population structure were conducted using AFLP markers. Different estimators of genetic variability indicated that the C. posadasii isolates from MX and AR had high genetic variability. Furthermore, AMOVA, dendrogram and haplotype network showed a small genetic differentiation among the C. posadasii populations analysed from MX and AR. Additionally, the I(A) calculated for the isolates suggested that the species has a recombinant reproductive system. CONCLUSIONS: No phenotypic variability was observed among the C. posadasii isolates from MX and AR. The high genetic variability observed in the isolates from MX and AR and the small genetic differentiation observed among the C. posadasii isolates analysed, suggest that this species could be distributed as a single genetic population in Latin America

    Native homing endonucleases can target conserved genes in humans and in animal models

    Get PDF
    In recent years, both homing endonucleases (HEases) and zinc-finger nucleases (ZFNs) have been engineered and selected for the targeting of desired human loci for gene therapy. However, enzyme engineering is lengthy and expensive and the off-target effect of the manufactured endonucleases is difficult to predict. Moreover, enzymes selected to cleave a human DNA locus may not cleave the homologous locus in the genome of animal models because of sequence divergence, thus hampering attempts to assess the in vivo efficacy and safety of any engineered enzyme prior to its application in human trials. Here, we show that naturally occurring HEases can be found, that cleave desirable human targets. Some of these enzymes are also shown to cleave the homologous sequence in the genome of animal models. In addition, the distribution of off-target effects may be more predictable for native HEases. Based on our experimental observations, we present the HomeBase algorithm, database and web server that allow a high-throughput computational search and assignment of HEases for the targeting of specific loci in the human and other genomes. We validate experimentally the predicted target specificity of candidate fungal, bacterial and archaeal HEases using cell free, yeast and archaeal assays

    One Fungus = One Name: DNA and fungal nomenclature twenty years after PCR

    Get PDF
    Some fungi with pleomorphic life-cycles still bear two names despite more than 20 years of molecular phylogenetics that have shown how to merge the two systems of classification, the asexual “Deuteromycota” and the sexual “Eumycota”. Mycologists have begun to flout nomenclatorial regulations and use just one name for one fungus. The International Code of Botanical Nomenclature (ICBN) must change to accommodate current practice or become irrelevant. The fundamental difference in the size of fungi and plants had a role in the origin of dual nomenclature and continues to hinder the development of an ICBN that fully accommodates microscopic fungi. A nomenclatorial crisis also looms due to environmental sequencing, which suggests that most fungi will have to be named without a physical specimen. Mycology may need to break from the ICBN and create a MycoCode to account for fungi known only from environmental nucleic acid sequence (i.e. ENAS fungi)

    Evolution of reproductive development in the volvocine algae

    Get PDF
    The evolution of multicellularity, the separation of germline cells from sterile somatic cells, and the generation of a male–female dichotomy are certainly among the greatest innovations of eukaryotes. Remarkably, phylogenetic analysis suggests that the shift from simple to complex, differentiated multicellularity was not a unique progression in the evolution of life, but in fact a quite frequent event. The spheroidal green alga Volvox and its close relatives, the volvocine algae, span the full range of organizational complexity, from unicellular and colonial genera to multicellular genera with a full germ–soma division of labor and male–female dichotomy; thus, these algae are ideal model organisms for addressing fundamental issues related to the transition to multicellularity and for discovering universal rules that characterize this transition. Of all living species, Volvox carteri represents the simplest version of an immortal germline producing specialized somatic cells. This cellular specialization involved the emergence of mortality and the production of the first dead ancestors in the evolution of this lineage. Volvocine algae therefore exemplify the evolution of cellular cooperation from cellular autonomy. They also serve as a prime example of the evolution of complex traits by a few successive, small steps. Thus, we learn from volvocine algae that the evolutionary transition to complex, multicellular life is probably much easier to achieve than is commonly believed

    The current status of species recognition and identification in Aspergillus

    Get PDF
    The species recognition and identification of aspergilli and their teleomorphs is discussed. A historical overview of the taxonomic concepts starting with the monograph of Raper & Fennell (1965) is given. A list of taxa described since 2000 is provided. Physiological characters, particularly growth rates and the production of extrolites, often show differences that reflect phylogenetic species boundaries and greater emphasis should be placed on extrolite profiles and growth characteristics in species descriptions. Multilocus sequence-based phylogenetic analyses have emerged as the primary tool for inferring phylogenetic species boundaries and relationships within subgenera and sections. A four locus DNA sequence study covering all major lineages in Aspergillus using genealogical concordance theory resulted in a species recognition system that agrees in part with phenotypic studies and reveals the presence of many undescribed species not resolved by phenotype. The use of as much data from as many sources as possible in making taxonomic decisions is advocated. For species identification, DNA barcoding uses a short genetic marker in an organism”s DNA to quickly and easily identify it to a particular species. Partial cytochrome oxidase subunit 1 sequences, which are used for barcoding animal species, were found to have limited value for species identification among black aspergilli. The various possibilities are discussed and at present partial β-tubulin or calmodulin are the most promising loci for Aspergillus identification. For characterising Aspergillus species one application would be to produce a multilocus phylogeny, with the goal of having a firm understanding of the evolutionary relationships among species across the entire genus. DNA chip technologies are discussed as possibilities for an accurate multilocus barcoding tool for the genus Aspergillus

    Evidence for Divergent Evolution of Growth Temperature Preference in Sympatric Saccharomyces Species

    Get PDF
    The genus Saccharomyces currently includes eight species in addition to the model yeast Saccharomyces cerevisiae, most of which can be consistently isolated from tree bark and soil. We recently found sympatric pairs of Saccharomyces species, composed of one cryotolerant and one thermotolerant species in oak bark samples of various geographic origins. In order to contribute to explain the occurrence in sympatry of Saccharomyces species, we screened Saccharomyces genomic data for protein divergence that might be correlated to distinct growth temperature preferences of the species, using the dN/dS ratio as a measure of protein evolution rates and pair-wise species comparisons. In addition to proteins previously implicated in growth at suboptimal temperatures, we found that glycolytic enzymes were among the proteins exhibiting higher than expected divergence when one cryotolerant and one thermotolerant species are compared. By measuring glycolytic fluxes and glycolytic enzymatic activities in different species and at different temperatures, we subsequently show that the unusual divergence of glycolytic genes may be related to divergent evolution of the glycolytic pathway aligning its performance to the growth temperature profiles of the different species. In general, our results support the view that growth temperature preference is a trait that may have undergone divergent selection in the course of ecological speciation in Saccharomyces

    Conservation of intron and intein insertion sites: implications for life histories of parasitic genetic elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inteins and introns are genetic elements that are removed from proteins and RNA after translation or transcription, respectively. Previous studies have suggested that these genetic elements are found in conserved parts of the host protein. To our knowledge this type of analysis has not been done for group II introns residing within a gene. Here we provide quantitative statistical support from an analyses of proteins that host inteins, group I introns, group II introns and spliceosomal introns across all three domains of life.</p> <p>Results</p> <p>To determine whether or not inteins, group I, group II, and spliceosomal introns are found preferentially in conserved regions of their respective host protein, conservation profiles were generated and intein and intron positions were mapped to the profiles. Fisher's combined probability test was used to determine the significance of the distribution of insertion sites across the conservation profile for each protein. For a subset of studied proteins, the conservation profile and insertion positions were mapped to protein structures to determine if the insertion sites correlate to regions of functional activity. All inteins and most group I introns were found to be preferentially located within conserved regions; in contrast, a bacterial intein-like protein, group II and spliceosomal introns did not show a preference for conserved sites.</p> <p>Conclusions</p> <p>These findings demonstrate that inteins and group I introns are found preferentially in conserved regions of their respective host proteins. Homing endonucleases are often located within inteins and group I introns and these may facilitate mobility to conserved regions. Insertion at these conserved positions decreases the chance of elimination, and slows deletion of the elements, since removal of the elements has to be precise as not to disrupt the function of the protein. Furthermore, functional constrains on the targeted site make it more difficult for hosts to evolve immunity to the homing endonuclease. Therefore, these elements will better survive and propagate as molecular parasites in conserved sites. In contrast, spliceosomal introns and group II introns do not show significant preference for conserved sites and appear to have adopted a different strategy to evade loss.</p
    corecore