58 research outputs found
Coarsening and Pinning in the Self-consistent Solution of Polymer Blends Phase-Separation Kinetics
We study analytically a continuum model for phase-separation in binary
polymer blends based on the Flory-Huggins-De Gennes free energy, by means of
the self-consistent large- limit approach. The model is solved for values of
the parameters corresponding to the weak and strong segregation limits. For
deep quenches we identify a complex structure of intermediate regimes and
crossovers characterized by the existence of a time domain such that phase
separation is pinned, followed by a preasymptotic regime which in the scalar
case corresponds to surface diffusion. The duration of the pinning is
analytically computed and diverges in the strong segregation limit. Eventually
a late stage dynamics sets in, described by scaling laws and exponents
analogous to those of the corresponding small molecule systems.Comment: 16 pages, 5 figures. Submitted to Phys. Rev.
P2Y2 and P2Y6 receptor activation elicits intracellular calcium responses in human adipose-derived mesenchymal stromal cells
Adipose tissue contains self-renewing multipotent cells termed mesenchymal stromal cells. In situ, these cells serve to expand adipose tissue by adipogenesis, but their multipotency has gained interest for use in tissue regeneration. Little is known regarding the repertoire of receptors expressed by adipose-derived mesenchymal stromal cells (AD-MSCs). The purpose of this study was to undertake a comprehensive analysis of purinergic receptor expression. Mesenchymal stromal cells were isolated from human subcutaneous adipose tissue and confirmed by flow cytometry. The expression profile of purinergic receptors was determined by quantitative real-time PCR and immunocytochemistry. The molecular basis for adenine and uracil nucleotide-evoked intracellular calcium responses was determined using Fura-2 measurements. All the known subtypes of P2X and P2Y receptors, excluding P2X2, P2X3 and P2Y12 receptors, were detected at the mRNA and protein level. ATP, ADP and UTP elicited concentration-dependent calcium responses in mesenchymal cells (N = 7–9 donors), with a potency ranking ADP (EC50 1.3 ± 1.0 μM) > ATP (EC50 2.2 ± 1.1 μM) = UTP (3.2 ± 2.8 μM). Cells were unresponsive to UDP (< 30 μM) and UDP-glucose (< 30 μM). ATP responses were attenuated by selective P2Y2 receptor antagonism (AR-C118925XX; IC50 1.1 ± 0.8 μM, 73.0 ± 8.5% max inhibition; N = 7 donors), and UTP responses were abolished. ADP responses were attenuated by the selective P2Y6 receptor antagonist, MRS2587 (IC50 437 ± 133nM, 81.0 ± 8.4% max inhibition; N = 6 donors). These data demonstrate that adenine and uracil nucleotides elicit intracellular calcium responses in human AD-MSCs with a predominant role for P2Y2 and P2Y6 receptor activation. This study furthers understanding about how human adipose-derived mesenchymal stromal cells can respond to external signalling cues
Case–control study and meta-analysis of SULT1A1 Arg213His polymorphism for gene, ethnicity and environment interaction for cancer risk
Cytosolic sulphotransferase SULT1A1 plays a dual role in the activation of some carcinogens and inactivation of others. A functional polymorphism leading to Arg213His substitution (SULT1A1*2) affects its catalytic activity and thermostability. To study the association of SULT1A1*2 polymorphism with tobacco-related cancers (TRCs), a case–control study comprising 132 patients with multiple primary neoplasm (MPN) involving TRC and 198 cancer-free controls was carried out. One hundred and thirteen MPN patients had at least one cancer in upper aerodigestive tract including lung (UADT-MPN). SULT1A1*2 showed significant risk association with UADT-MPN (odds ratio (OR)=5.50, 95% confidence interval (CI): 1.09, 27.7). Meta-analysis was conducted combining the data with 34 published studies that included 11 962 cancer cases and 14 673 controls in diverse cancers. The SULT1A1*2 revealed contrasting risk association for UADT cancers (OR=1.62, 95% CI: 1.12, 2.34) and genitourinary cancers (OR=0.73, 95% CI: 0.58, 0.92). Furthermore, although SULT1A1*2 conferred significant increased risk of breast cancer to Asian women (OR=1.91, 95% CI: 1.08, 3.40), it did not confer increased risk to Caucasian women (OR=0.92, 95% CI: 0.71, 1.18). Thus risk for different cancers in distinct ethnic groups could be modulated by interaction between genetic variants and different endogenous and exogenous carcinogens
Total ankle prostheses in rheumatoid arthropathy: Outcome in 52 patients followed for 1–9 years
Background and purpose The first generations of total ankle replacements (TARs) showed a high rate of early failure. In the last decades, much progress has been made in the development of TARs, with the newer generation showing better results. We evaluated TARs implanted with rheumatoid arthritis (RA) or juvenile inflammatory arthritis (JIA) as indication
Multiple Analytical Approaches Reveal Distinct Gene-Environment Interactions in Smokers and Non Smokers in Lung Cancer
Complex disease such as cancer results from interactions of multiple genetic and environmental factors. Studying these factors singularly cannot explain the underlying pathogenetic mechanism of the disease. Multi-analytical approach, including logistic regression (LR), classification and regression tree (CART) and multifactor dimensionality reduction (MDR), was applied in 188 lung cancer cases and 290 controls to explore high order interactions among xenobiotic metabolizing genes and environmental risk factors. Smoking was identified as the predominant risk factor by all three analytical approaches. Individually, CYP1A1*2A polymorphism was significantly associated with increased lung cancer risk (OR = 1.69;95%CI = 1.11–2.59,p = 0.01), whereas EPHX1 Tyr113His and SULT1A1 Arg213His conferred reduced risk (OR = 0.40;95%CI = 0.25–0.65,p<0.001 and OR = 0.51;95%CI = 0.33–0.78,p = 0.002 respectively). In smokers, EPHX1 Tyr113His and SULT1A1 Arg213His polymorphisms reduced the risk of lung cancer, whereas CYP1A1*2A, CYP1A1*2C and GSTP1 Ile105Val imparted increased risk in non-smokers only. While exploring non-linear interactions through CART analysis, smokers carrying the combination of EPHX1 113TC (Tyr/His), SULT1A1 213GG (Arg/Arg) or AA (His/His) and GSTM1 null genotypes showed the highest risk for lung cancer (OR = 3.73;95%CI = 1.33–10.55,p = 0.006), whereas combined effect of CYP1A1*2A 6235CC or TC, SULT1A1 213GG (Arg/Arg) and betel quid chewing showed maximum risk in non-smokers (OR = 2.93;95%CI = 1.15–7.51,p = 0.01). MDR analysis identified two distinct predictor models for the risk of lung cancer in smokers (tobacco chewing, EPHX1 Tyr113His, and SULT1A1 Arg213His) and non-smokers (CYP1A1*2A, GSTP1 Ile105Val and SULT1A1 Arg213His) with testing balance accuracy (TBA) of 0.6436 and 0.6677 respectively. Interaction entropy interpretations of MDR results showed non-additive interactions of tobacco chewing with SULT1A1 Arg213His and EPHX1 Tyr113His in smokers and SULT1A1 Arg213His with GSTP1 Ile105Val and CYP1A1*2C in nonsmokers. These results identified distinct gene-gene and gene environment interactions in smokers and non-smokers, which confirms the importance of multifactorial interaction in risk assessment of lung cancer
Mitochondrial Pathway Mediates the Antileukemic Effects of Hemidesmus Indicus, a Promising Botanical Drug
Although cancers are characterized by the deregulation of multiple signalling pathways, most current anticancer therapies involve the modulation of a single target. Because of the enormous biological diversity of cancer, strategic combination of agents targeted against the most critical of those alterations is needed. Due to their complex nature, plant products interact with numerous targets and influence several biochemical and molecular cascades. The interest in further development of botanical drugs has been increasing steadily and the FDA recently approved the first new botanical prescription drug. The present study is designed to explore the potential antileukemic properties of Hemidesmus indicus with a view to contributing to further development of botanical drugs. Hemidesmus was submitted to an extensive in vitro preclinical evaluation.A variety of cellular assays and flow cytometry, as well as a phytochemical screening, were performed on different leukemic cell lines. We have demonstrated that Hemidesmus modulated many components of intracellular signaling pathways involved in cell viability and proliferation and altered the protein expression, eventually leading to tumor cell death, mediated by a loss of mitochondrial transmembrane potential and increased Bax/Bcl-2 ratio. ADP, adenine nucleotide translocator and mitochondrial permeability transition pore inhibitors did not reverse Hemidesmus-induced mitochondrial depolarization. Hemidesmus induced a significant [Ca(2+)](i) raise through the mobilization of intracellular Ca(2+) stores. Moreover, Hemidesmus significantly enhanced the antitumor activity of three commonly used chemotherapeutic drugs (methotrexate, 6-thioguanine, cytarabine). A clinically relevant observation is that its cytotoxic activity was also recorded in primary cells from acute myeloid leukemic patients.These results indicate the molecular basis of the antileukemic effects of Hemidesmus and identify the mitochondrial pathways and [Ca(2+)](i) as crucial actors in its anticancer activity. On these bases, we conclude that Hemidesmus can represent a valuable tool in the anticancer pharmacology, and should be considered for further investigations
Dynamic Changes in the MicroRNA Expression Profile Reveal Multiple Regulatory Mechanisms in the Spinal Nerve Ligation Model of Neuropathic Pain
Neuropathic pain resulting from nerve lesions or dysfunction represents one of the most challenging neurological diseases to treat. A better understanding of the molecular mechanisms responsible for causing these maladaptive responses can help develop novel therapeutic strategies and biomarkers for neuropathic pain. We performed a miRNA expression profiling study of dorsal root ganglion (DRG) tissue from rats four weeks post spinal nerve ligation (SNL), a model of neuropathic pain. TaqMan low density arrays identified 63 miRNAs whose level of expression was significantly altered following SNL surgery. Of these, 59 were downregulated and the ipsilateral L4 DRG, not the injured L5 DRG, showed the most significant downregulation suggesting that miRNA changes in the uninjured afferents may underlie the development and maintenance of neuropathic pain. TargetScan was used to predict mRNA targets for these miRNAs and it was found that the transcripts with multiple predicted target sites belong to neurologically important pathways. By employing different bioinformatic approaches we identified neurite remodeling as a significantly regulated biological pathway, and some of these predictions were confirmed by siRNA knockdown for genes that regulate neurite growth in differentiated Neuro2A cells. In vitro validation for predicted target sites in the 3′-UTR of voltage-gated sodium channel Scn11a, alpha 2/delta1 subunit of voltage-dependent Ca-channel, and purinergic receptor P2rx ligand-gated ion channel 4 using luciferase reporter assays showed that identified miRNAs modulated gene expression significantly. Our results suggest the potential for miRNAs to play a direct role in neuropathic pain
Toward osteogenic differentiation of marrow stromal cells and in vitro production of mineralized extracellular matrix onto natural scaffolds
Uncorrected proofTissue engineering has emerged as a new interdisciplinary field for the repair of various tissues, restoring their functions by using scaffolds, cells, and/or bioactive factors. A temporary scaffold acts as an extracellular matrix analog to culture cells and guide the development of new tissue. In this chapter, we discuss the preparation of naturally derived scaffolds of polysaccharide origin, the osteogenic differentiation of mesenchymal stem cells cultured on biomimetic calcium phosphate coatings, and the delivery of biomolecules associated with extracellular matrix mineralization
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
- …