3,058 research outputs found

    Stability of the superfluid state in a disordered 1D ultracold fermionic gas

    Get PDF
    We study a 1D Fermi gas with attractive short range-interactions in a disordered potential by the density matrix renormalization group (DMRG) technique. This setting can be implemented experimentally by using cold atom techniques. We identify a region of parameters for which disorder enhances the superfluid state. As disorder is further increased, global superfluidity eventually breaks down. However this transition occurs before the transition to the insulator state takes place. This suggests the existence of an intermediate metallic `pseudogap' phase characterized by strong pairing but no quasi long-range order.Comment: 5 pages, 5 figure

    Spin wave dispersion based on the quasiparticle self-consistent GWGW method: NiO, MnO and α\alpha-MnAs

    Full text link
    We present spin wave dispersions in MnO, NiO, and α\alpha-MnAs based on the quasiparticle self-consistent GWGW method (\qsgw), which determines an optimum quasiparticle picture. For MnO and NiO, \qsgw results are in rather good agreement with experiments, in contrast to the LDA and LDA+U description. For α\alpha-MnAs, we find a collinear ferromagnetic ground state in \qsgw, while this phase is unstable in the LDA.Comment: V2: add another figure for SW life time. Formalism is detaile

    Quasiparticle Self-Consistent GW Theory

    Full text link
    In past decades the scientific community has been looking for a reliable first-principles method to predict the electronic structure of solids with high accuracy. Here we present an approach which we call the quasiparticle self-consistent GW approximation (QpscGW). It is based on a kind of self-consistent perturbation theory, where the self-consistency is constructed to minimize the perturbation. We apply it to selections from different classes of materials, including alkali metals, semiconductors, wide band gap insulators, transition metals, transition metal oxides, magnetic insulators, and rare earth compounds. Apart some mild exceptions, the properties are very well described, particularly in weakly correlated cases. Self-consistency dramatically improves agreement with experiment, and is sometimes essential. Discrepancies with experiment are systematic, and can be explained in terms of approximations made.Comment: 12 pages, 3 figure

    Gamma-ray variability from wind clumping in HMXBs with jets

    Full text link
    In the subclass of high-mass X-ray binaries known as "microquasars", relativistic hadrons in the jets launched by the compact object can interact with cold protons from the star's radiatively driven wind, producing pions that then quickly decay into gamma rays. Since the resulting gamma-ray emissivity depends on the target density, the detection of rapid variability in microquasars with GLAST and the new generation of Cherenkov imaging arrays could be used to probe the clumped structure of the stellar wind. We show here that the fluctuation in gamma rays can be modeled using a "porosity length" formalism, usually applied to characterize clumping effects. In particular, for a porosity length defined by h=l/f, i.e. as the ratio of the characteristic size l of clumps to their volume filling factor f, we find that the relative fluctuation in gamma-ray emission in a binary with orbital separation a scales as sqrt(h/pi a) in the "thin-jet" limit, and is reduced by a factor 1/sqrt(1 + phi a/(2 l)) for a jet with a finite opening angle phi. For a thin jet and quite moderate porosity length h ~ 0.03 a, this implies a ca. 10 % variation in the gamma-ray emission. Moreover, the illumination of individual large clumps might result in isolated flares, as has been recently observed in some massive gamma-ray binaries.Comment: Accepted for publication in ApJ; 5 pages, 1 figur

    Positive Lyapunov Exponents for Quasiperiodic Szego cocycles

    Full text link
    In this paper we first obtain a formula of averaged Lyapunov exponents for ergodic Szego cocycles via the Herman-Avila-Bochi formula. Then using acceleration, we construct a class of analytic quasi-periodic Szego cocycles with uniformly positive Lyapunov exponents. Finally, a simple application of the main theorem in [Y] allows us to estimate the Lebesgue measure of support of the measure associated to certain class of C1 quasiperiodic 2- sided Verblunsky coefficients. Using the same method, we also recover the [S-S] results for Schrodinger cocycles with nonconstant real analytic potentials and obtain some nonuniform hyperbolicity results for arbitrarily fixed Brjuno frequency and for certain C1 potentials.Comment: 27 papge

    Theoretical study of resonant x-ray emission spectroscopy of Mn films on Ag

    Full text link
    We report a theoretical study on resonant x-ray emission spectra (RXES) in the whole energy region of the Mn L2,3L_{2,3} white lines for three prototypical Mn/Ag(001) systems: (i) a Mn impurity in Ag, (ii) an adsorbed Mn monolayer on Ag, and (iii) a thick Mn film. The calculated RXES spectra depend strongly on the excitation energy. At L3L_3 excitation, the spectra of all three systems are dominated by the elastic peak. For excitation energies around L2L_2, and between L3L_3 and L2L_2, however, most of the spectral weight comes from inelastic x-ray scattering. The line shape of these inelastic ``satellite'' structures changes considerably between the three considered Mn/Ag systems, a fact that may be attributed to changes in the bonding nature of the Mn-dd orbitals. The system-dependence of the RXES spectrum is thus found to be much stronger than that of the corresponding absorption spectrum. Our results suggest that RXES in the Mn L2,3L_{2,3} region may be used as a sensitive probe of the local environment of Mn atoms.Comment: 9 pages, 11 figure

    Pupil remapping for high contrast astronomy: results from an optical testbed

    Full text link
    The direct imaging and characterization of Earth-like planets is among the most sought-after prizes in contemporary astrophysics, however current optical instrumentation delivers insufficient dynamic range to overcome the vast contrast differential between the planet and its host star. New opportunities are offered by coherent single mode fibers, whose technological development has been motivated by the needs of the telecom industry in the near infrared. This paper presents a new vision for an instrument using coherent waveguides to remap the pupil geometry of the telescope. It would (i) inject the full pupil of the telescope into an array of single mode fibers, (ii) rearrange the pupil so fringes can be accurately measured, and (iii) permit image reconstruction so that atmospheric blurring can be totally removed. Here we present a laboratory experiment whose goal was to validate the theoretical concepts underpinning our proposed method. We successfully confirmed that we can retrieve the image of a simulated astrophysical object (in this case a binary star) though a pupil remapping instrument using single mode fibers.Comment: Accepted in Optics Expres

    A Massive Jet Ejection Event from the Microquasar SS 433 Accompanying Rapid X-Ray Variability

    Full text link
    Microquasars occasionally exhibit massive jet ejections which are distinct from the continuous or quasi-continuous weak jet ejections. Because those massive jet ejections are rare and short events, they have hardly been observed in X-ray so far. In this paper, the first X-ray observation of a massive jet ejection from the microquasar SS 433 with the Rossi X-ray Timing Explorer (RXTE) is reported. SS 433 undergoing a massive ejection event shows a variety of new phenomena including a QPO-like feature near 0.1 Hz, rapid time variability, and shot-like activities. The shot-like activity may be caused by the formation of a small plasma bullet. A massive jet may be consist of thousands of those plasma bullets ejected from the binary system. The size, mass, internal energy, and kinetic energy of the bullets and the massive jet are estimated.Comment: 21 pages including 5 figures, submitted to Ap
    • 

    corecore