154 research outputs found

    The RNA Binding Protein SAM68 Transiently Localizes in the Chromatoid Body of Male Germ Cells and Influences Expression of Select MicroRNAs

    Get PDF
    The chromatoid body (CB) is a unique structure of male germ cells composed of thin filaments that condense into a perinuclear organelle after meiosis. Due to the presence of proteins involved in different steps of RNA metabolism and of different classes of RNAs, including microRNAs (miRNAs), the CB has been recently suggested to function as an RNA processing centre. Herein, we show that the RNA binding protein SAM68 transiently localizes in the CB, in concomitance with the meiotic divisions of mouse spermatocytes. Precise staging of the seminiferous tubules and co-localization studies with MVH and MILI, two well recognized CB markers, documented that SAM68 transiently associates with the CB in secondary spermatocytes and early round spermatids. Furthermore, although SAM68 co-immunoprecipitated with MVH in secondary spermatocytes, its ablation did not affect the proper localization of MVH in the CB. On the other hand, ablation of the CB constitutive component MIWI did not impair association of SAM68 with the CB. Isolation of CBs from Sam68 wild type and knockout mouse testes and comparison of their protein content by mass spectrometry indicated that Sam68 ablation did not cause overall alterations in the CB proteome. Lastly, we found that SAM68 interacts with DROSHA and DICER in secondary spermatocytes and early round spermatids and that a subset of miRNAs were altered in Sam68−/−germ cells. These results suggest a novel role for SAM68 in the miRNA pathway during spermatogenesis

    Enrichment of Pachytene Spermatocytes and Spermatids from Mouse Testes Using Standard Laboratory Equipment

    Get PDF
    To characterize each step of spermatogenesis, researchers must separate different subpopulations of germ cells from testes. However, isolating discrete populations is challenging, because the adult testis contains a complex mix of germ cells from all steps of spermatogenesis along with certain populations of somatic cells. Over the past few decades, different techniques such as centrifugal elutriation, fluorescence-activated cell sorting (FACS), and STA-PUT have been successfully applied to the isolation of germ cells. A drawback is that they all require dedicated devices and specialized training. Following principles underlying the STA-PUT method, a simple protocol has been developed for the isolation of pachytene spermatocytes, round spermatids, and elongating spermatids from mouse testes. After preparing a single cell suspension of testicular cells, specific cell populations are enriched by gravity sedimentation through a discontinuous bovine serum albumin (BSA) density gradient. The cell fractions are then manually collected and microscopically analysed. This modified density gradient for round spermatids (MDR) sedimentation protocol can be widely applied, because it requires only standard laboratory equipment. Furthermore, the protocol requires minimal starting materials, reducing its cost and use of laboratory animals

    An atlas of chromatoid body components

    Get PDF
    The genome of male germ cells is actively transcribed during spermatogenesis to produce phase-specific protein-coding mRNAs and a considerable amount of different noncoding RNAs. Ribonucleoprotein (RNP) granule-mediated RNA regulation provides a powerful means to secure the quality and correct expression of the requisite transcripts. Haploid spermatids are characterized by a unique, unusually large cytoplasmic granule, the chromatoid body (CB), which emerges during the switch between the meiotic and post-meiotic phases of spermatogenesis. To better understand the role of the CB in male germ cell differentiation, we isolated CBs from mouse testes and revealed its full RNA and protein composition. We showed that the CB is mainly composed of RNA-binding proteins and other proteins involved RNA regulation. The CB was loaded with RNA, including pachytene piRNAs, a diverse set of mRNAs, and a number of uncharacterized long noncoding transcripts. The CB was demonstrated to accumulate nascent RNA during all the steps of round spermatid differentiation. Our results revealed the CB as a large germ cell-specific RNP platform that is involved in the control of the highly complex transcriptome of haploid male germ cells

    Temporally Regulated Traffic of HuR and Its Associated ARE-Containing mRNAs from the Chromatoid Body to Polysomes during Mouse Spermatogenesis

    Get PDF
    International audienceBACKGROUND: In mammals, a temporal disconnection between mRNA transcription and protein synthesis occurs during late steps of germ cell differentiation, in contrast to most somatic tissues where transcription and translation are closely linked. Indeed, during late stages of spermatogenesis, protein synthesis relies on the appropriate storage of translationally inactive mRNAs in transcriptionally silent spermatids. The factors and cellular compartments regulating mRNA storage and the timing of their translation are still poorly understood. The chromatoid body (CB), that shares components with the P. bodies found in somatic cells, has recently been proposed to be a site of mRNA processing. Here, we describe a new component of the CB, the RNA binding protein HuR, known in somatic cells to control the stability/translation of AU-rich containing mRNAs (ARE-mRNAs). METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of cell imagery and sucrose gradient fractionation, we show that HuR localization is highly dynamic during spermatid differentiation. First, in early round spermatids, HuR colocalizes with the Mouse Vasa Homolog, MVH, a marker of the CB. As spermatids differentiate, HuR exits the CB and concomitantly associates with polysomes. Using computational analyses, we identified two testis ARE-containing mRNAs, Brd2 and GCNF that are bound by HuR and MVH. We show that these target ARE-mRNAs follow HuR trafficking, accumulating successively in the CB, where they are translationally silent, and in polysomes during spermatid differentiation. CONCLUSIONS/SIGNIFICANCE: Our results reveal a temporal regulation of HuR trafficking together with its target mRNAs from the CB to polysomes as spermatids differentiate. They strongly suggest that through the transport of ARE-mRNAs from the CB to polysomes, HuR controls the appropriate timing of ARE-mRNA translation. HuR might represent a major post-transcriptional regulator, by promoting mRNA storage and then translation, during male germ cell differentiation

    SMG6 localizes to the chromatoid body and shapes the male germ cell transcriptome to drive spermatogenesis

    Get PDF
    Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that depends on the endonuclease SMG6. Here, we show that SMG6 is essential for male germ cell differentiation in mice. Germ-cell conditional knockout (cKO) of Smg6 induces extensive transcriptome misregulation, including a failure to eliminate meiotically expressed transcripts in early haploid cells, and accumulation of NMD target mRNAs with long 3 ' untranslated regions (UTRs). Loss of SMG6 in the male germline results in complete arrest of spermatogenesis at the early haploid cell stage. We find that SMG6 is strikingly enriched in the chromatoid body (CB), a specialized cytoplasmic granule in male germ cells also harboring PIWI-interacting RNAs (piRNAs) and the piRNA-binding protein PIWIL1. This raises the possibility that SMG6 and the piRNA pathway function together, which is supported by several findings, including that Piwil1-KO mice phenocopy Smg6-cKO mice and that SMG6 and PIWIL1 co-regulate many genes in round spermatids. Together, our results demonstrate that SMG6 is an essential regulator of the male germline transcriptome, and highlight the CB as a molecular platform coordinating RNA regulatory pathways to control sperm production and fertility.Peer reviewe

    Ultra-Fast and Optimized Method for the Preparation of Rodent Testicular Cells for Flow Cytometric Analysis

    Get PDF
    Homogeneity of cell populations is a prerequisite for the analysis of biochemical and molecular events during male gamete differentiation. Given the complex organization of the mammalian testicular tissue, various methods have been used to obtain enriched or purified cell populations, including flow cell sorting. Current protocols are usually time-consuming and may imply loss of short-lived RNAs, which is undesirable for expression profiling. We describe an optimized method to speed up the preparation of suitable testicular cell suspensions for cytometric analysis of different spermatogenic stages from rodents. The procedure takes only 15 min including testis dissection, tissue cutting, and processing through the Medimachine System (Becton Dickinson). This method could be a substitute for the more tedious and time-consuming cell preparation techniques currently in use

    Transcription Factor USF1 Is Required for Maintenance of Germline Stem Cells in Male Mice

    Get PDF
    A prerequisite for lifelong sperm production is that spermatogonial stem cells (SSCs) balance self-renewal and differentiation, yet factors required for this balance remain largely undefined. Using mouse genetics, we now demonstrate that the ubiquitously expressed transcription factor upstream stimulatory factor (USF)1 is critical for the maintenance of SSCs. We show that USF1 is not only detected in Sertoli cells as previously reported, but also in SSCs. Usf1-deficient mice display progressive spermatogenic decline as a result of age-dependent loss of SSCs. According to our data, the germ cell defect in Usf1−/− mice cannot be attributed to impairment of Sertoli cell development, maturation, or function, but instead is likely due to an inability of SSCs to maintain a quiescent state. SSCs of Usf1−/− mice undergo continuous proliferation, which provides an explanation for their age-dependent depletion. The proliferation-coupled exhaustion of SSCs in turn results in progressive degeneration of the seminiferous epithelium, gradual decrease in sperm production, and testicular atrophy. We conclude that the general transcription factor USF1 is indispensable for the proper maintenance of mammalian spermatogenesis.</p

    Analysis of MicroRNA Expression in the Prepubertal Testis

    Get PDF
    Only thirteen microRNAs are conserved between D. melanogaster and the mouse; however, conditional loss of miRNA function through mutation of Dicer causes defects in proliferation of premeiotic germ cells in both species. This highlights the potentially important, but uncharacterized, role of miRNAs during early spermatogenesis. The goal of this study was to characterize on postnatal day 7, 10, and 14 the content and editing of murine testicular miRNAs, which predominantly arise from spermatogonia and spermatocytes, in contrast to prior descriptions of miRNAs in the adult mouse testis which largely reflects the content of spermatids. Previous studies have shown miRNAs to be abundant in the mouse testis by postnatal day 14; however, through Next Generation Sequencing of testes from a B6;129 background we found abundant earlier expression of miRNAs and describe shifts in the miRNA signature during this period. We detected robust expression of miRNAs encoded on the X chromosome in postnatal day 14 testes, consistent with prior studies showing their resistance to meiotic sex chromosome inactivation. Unexpectedly, we also found a similar positional enrichment for most miRNAs on chromosome 2 at postnatal day 14 and for those on chromosome 12 at postnatal day 7. We quantified in vivo developmental changes in three types of miRNA variation including 5â€Č heterogeneity, editing, and 3â€Č nucleotide addition. We identified eleven putative novel pubertal testis miRNAs whose developmental expression suggests a possible role in early male germ cell development. These studies provide a foundation for interpretation of miRNA changes associated with testicular pathology and identification of novel components of the miRNA editing machinery in the testis

    Lack of androgen receptor SUMOylation results in male infertility due to epididymal dysfunction

    Get PDF
    Androgen receptor (AR) is regulated by SUMOylation at its transactivation domain. In vitro, the SUMOylation is linked to transcriptional repression and/or target gene-selective regulation. Here, we generated a mouse model (ArKl) in which the conserved SUMO acceptor lysines of AR are permanently abolished (Ar-K381R, (K500R)) ArKl males develop normally, without apparent defects in their systemic androgen action in reproductive tissues. However, the ArKl males are infertile. Their spermatogenesis appears unaffected, but their epididymal sperm maturation is defective, shown by severely compromised motility and fertilization capacity of the sperm. Fittingly, their epididymal AR chromatin-binding and gene expression associated with sperm maturation and function are misregulated. AR is SUMOylated in the wild-type epididymis but not in the testis, which could explain the tissue-specific response to the lack of AR SUMOylation. Our studies thus indicate that epididymal AR SUMOylation is essential for the post-testicular sperm maturation and normal reproductive capability of male mice

    Dicer1 Depletion in Male Germ Cells Leads to Infertility Due to Cumulative Meiotic and Spermiogenic Defects

    Get PDF
    Background: Spermatogenesis is a complex biological process that requires a highly specialized control of gene expression. In the past decade, small non-coding RNAs have emerged as critical regulators of gene expression both at the transcriptional and post-transcriptional level. DICER1, an RNAse III endonuclease, is essential for the biogenesis of several classes of small RNAs, including microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), but is also critical for the degradation of toxic transposable elements. In this study, we investigated to which extent DICER1 is required for germ cell development and the progress of spermatogenesis in mice.Principal Findings: We show that the selective ablation of Dicer1 at the early onset of male germ cell development leads to infertility, due to multiple cumulative defects at the meiotic and post-meiotic stages culminating with the absence of functional spermatozoa. Alterations were observed in the first spermatogenic wave and include delayed progression of spermatocytes to prophase I and increased apoptosis, resulting in a reduced number of round spermatids. The transition from round to mature spermatozoa was also severely affected, since the few spermatozoa formed in mutant animals were immobile and misshapen, exhibiting morphological defects of the head and flagellum. We also found evidence that the expression of transposable elements of the SINE family is up-regulated in Dicer1-depleted spermatocytes.Conclusions/Significance: Our findings indicate that DICER1 is dispensable for spermatogonial stem cell renewal and mitotic proliferation, but is required for germ cell differentiation through the meiotic and haploid phases of spermatogenesis
    • 

    corecore