658 research outputs found
Isospin-0 s-wave scattering length from twisted mass lattice QCD
We present results for the isospin-0 s-wave scattering length
calculated with Osterwalder-Seiler valence quarks on Wilson twisted mass gauge
configurations. We use three ensembles with unitary (valence) pion
mass at its physical value (250MeV), at 240MeV (320MeV) and
at 330MeV (400MeV), respectively. By using the stochastic Laplacian
Heaviside quark smearing method, all quark propagation diagrams contributing to
the isospin-0 correlation function are computed with sufficient
precision. The chiral extrapolation is performed to obtain the scattering
length at the physical pion mass. Our result agrees reasonably well with various experimental measurements and
theoretical predictions. Since we only use one lattice spacing, certain
systematics uncertainties, especially those arising from unitary breaking, are
not controlled in our result.Comment: 21 pages, 5 figures, 6 table
A gravitationally lensed quasar discovered in OGLE
Indexación: Scopus; Web of Science.We report the discovery of a new gravitationally lensed quasar (double) from the Optical Gravitational Lensing Experiment (OGLE) identified inside the ~670deg2 area encompassing the Magellanic Clouds. The source was selected as one of ~60 'red W1-W2' mid-infrared objects from WISE and having a significant amount of variability in OGLE for both two (or more) nearby sources. This is the first detection of a gravitational lens, where the discovery is made 'the other way around', meaning we first measured the time delay between the two lensed quasar images of -132 < tAB < -76 d (90 per cent CL), with the median tAB ~-102 d (in the observer frame), and where the fainter image B lags image A. The system consists of the two quasar images separated by 1.5 arcsec on the sky, with I ~20.0mag and I ~19.6mag, respectively, and a lensing galaxy that becomes detectable as I ~21.5 mag source, 1.0 arcsec from image A, after subtracting the two lensed images. Both quasar images show clear AGN broad emission lines at z=2.16 in the New Technology Telescope spectra. The spectral energy distribution (SED) fitting with the fixed source redshift provided the estimate of the lensing galaxy redshift of z ~0.9 ± 0.2 (90 per cent CL), while its type is more likely to be elliptical (the SED-inferred and lens-model stellar mass is more likely present in ellipticals) than spiral (preferred redshift by the lens model). © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.https://academic.oup.com/mnras/article/476/1/663/483368
New Coumarin derivatives as cholinergic and cannabinoid system modulators
In the last years, the connection between the endocannabinoid system (eCS) and neuroprotection has been discovered, and evidence indicates that eCS signaling is involved in the regulation of cognitive processes and in the pathophysiology of Alzheimer’s disease (AD). Accordingly, pharmacotherapy targeting eCS could represent a valuable contribution in fighting a multifaceted disease such as AD, opening a new perspective for the development of active agents with multitarget potential. In this paper, a series of coumarin-based carbamic and amide derivatives were designed and synthesized as multipotent compounds acting on cholinergic system and eCS-related targets. Indeed, they were tested with appropriate enzymatic assays on acetyl and butyryl-cholinesterases and on fatty acid amide hydrolase (FAAH), and also evaluated as cannabinoid receptor (CB1 and CB2) ligands. Moreover, their ability to reduce the self-aggregation of beta amyloid protein (Aβ42) was assessed. Compounds 2 and 3, bearing a carbamate function, emerged as promising inhibitors of hAChE, hBuChE, FAAH and Aβ42 self-aggregation, albeit with moderate potencies, while the amide 6 also appears a promising CB1/CB2 receptors ligand. These data prove for the new compounds an encouraging multitarget profile, deserving further evaluation
Constraining the nature of the accreting binary in CXOGBS J174623.5-310550
We report optical and infrared observations of the X-ray source CXOGBS
J174623.5-310550. This Galactic object was identified as a potential quiescent
low-mass X-ray binary accreting from an M-type donor on the basis of optical
spectroscopy and the broad Halpha emission line. The analysis of X-shooter
spectroscopy covering 3 consecutive nights supports an M2/3-type spectral
classification. Neither radial velocity variations nor rotational broadening is
detected in the photospheric lines. No periodic variability is found in I- and
r'-band light curves. We derive r' = 20.8, I = 19.2 and Ks = 16.6 for the
optical and infrared counterparts with the M-type star contributing 90% to the
I-band light. We estimate its distance to be 1.3-1.8 kpc. The lack of radial
velocity variations implies that the M-type star is not the donor star in the
X-ray binary. This could be an interloper or the outer body in a hierarchical
triple. We constrain the accreting binary to be a < 2.2 hr orbital period
eclipsing cataclysmic variable or a low-mass X-ray binary lying in the
foreground of the Galactic Bulge.Comment: (9 pages, 5 figures, accepted for publication in MNRAS
OGLE16aaa - a Signature of a Hungry Super Massive Black Hole
We present the discovery and first three months of follow-up observations of
a currently on-going unusual transient detected by the OGLE-IV survey, located
in the centre of a galaxy at redshift z=0.1655. The long rise to absolute
magnitude of -20.5 mag, slow decline, very broad He and H spectral features
make OGLE16aaa similar to other optical/UV Tidal Disruption Events (TDEs). Weak
narrow emission lines in the spectrum and archival photometric observations
suggest the host galaxy is a weak-line Active Galactic Nucleus (AGN), which has
been accreting at higher rate in the past. OGLE16aaa, along with SDSS J0748,
seems to form a sub-class of TDEs by weakly or recently active super-massive
black holes (SMBHs). This class might bridge the TDEs by quiescent SMBHs and
flares observed as "changing-look QSOs", if we interpret the latter as TDEs. If
this picture is true, the previously applied requirement for identifying a
flare as a TDE that it had to come from an inactive nucleus, could be leading
to observational bias in TDE selection, thus affecting TDE-rate estimations.Comment: Accepted in MNRAS Letter
- …