403 research outputs found

    Fracture healing physiology and the quest for therapies for delayed healing and nonunion

    Full text link
    Delayed healing and nonunion of fractures represent enormous burdens to patients and healthcare systems. There are currently no approved pharmacological agents for the treatment of established nonunions, or for the acceleration of fracture healing, and no pharmacological agents are approved for promoting the healing of closed fractures. Yet several pharmacologic agents have the potential to enhance some aspects of fracture healing. In preclinical studies, various agents working across a broad spectrum of molecular pathways can produce larger, denser and stronger fracture calluses. However, untreated control animals in most of these studies also demonstrate robust structural and biomechanical healing, leaving unclear how these interventions might alter the healing of recalcitrant fractures in humans. This review describes the physiology of fracture healing, with a focus on aspects of natural repair that may be pharmacologically augmented to prevent or treat delayed or nonunion fractures (collectively referred to as DNFs). The agents covered in this review include recombinant BMPs, PTH/PTHrP receptor agonists, activators of Wnt/ÎČ‐catenin signaling, and recombinant FGF‐2. Agents from these therapeutic classes have undergone extensive preclinical testing and progressed to clinical fracture healing trials. Each can promote bone formation, which is important for the stability of bridged calluses, and some but not all can also promote cartilage formation, which may be critical for the initial bridging and subsequent stabilization of fractures. Appropriately timed stimulation of chondrogenesis and osteogenesis in the fracture callus may be a more effective approach for preventing or treating DNFs compared with stimulation of osteogenesis alone. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:213–223, 2017.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/136027/1/jor23460.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/136027/2/jor23460_am.pd

    Abaloparatide, a PTH receptor agonist with homology to PTHrP, enhances callus bridging and biomechanical properties in rats with femoral fracture

    Full text link
    Fractures typically heal via endochondral and intramembranous bone formation, which together form a callus that achieves union and biomechanical recovery. PTHrP, a PTH receptor agonist, plays an important physiological role in fracture healing as an endogenous stimulator of endochondral and intramembranous bone formation. Abaloparatide, a novel systemically‐administered osteoanabolic PTH receptor agonist that reduces fracture risk in women with postmenopausal osteoporosis, has 76% homology to PTHrP, suggesting it may have potential to improve fracture healing. To test this hypothesis, ninety‐six 12‐week‐old male rats underwent unilateral internally‐stabilized closed mid‐diaphyseal femoral fractures and were treated starting the next day with daily s.c. saline (Vehicle) or abaloparatide at 5 or 20 ”g/kg/d for 4 or 6 weeks (16 rats/group/time point). Histomorphometry and histology analyses indicated that fracture calluses from the abaloparatide groups exhibited significantly greater total area, higher fluorescence scores indicating more newly‐formed bone, and higher fracture bridging scores versus Vehicle controls. Callus bridging score best correlated with callus cartilage score (r = 0.64) and fluorescence score (r = 0.67) at week 4, and callus area correlated with cartilage score (r = 0.60) and fluorescence score (r = 0.89) at Week 6. By micro‐CT, calluses from one or both abaloparatide groups had greater bone volume, bone volume fraction, bone mineral content, bone mineral density, and cross‐sectional area at both time points versus Vehicle controls. Destructive bending tests indicated greater callus maximum load and stiffness in one or both abaloparatide groups at both time points versus Vehicle controls. These results provide preliminary preclinical evidence for improved fracture healing with systemically‐administered abaloparatide. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop ResPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149317/1/jor24254_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149317/2/jor24254.pd

    OPG‐Fc but Not Zoledronic Acid Discontinuation Reverses Osteonecrosis of the Jaws (ONJ) in Mice

    Full text link
    Osteonecrosis of the jaws (ONJ) is a significant complication of antiresorptive medications, such as bisphosphonates and denosumab. Antiresorptive discontinuation to promote healing of ONJ lesions remains highly controversial and understudied. Here, we investigated whether antiresorptive discontinuation alters ONJ features in mice, employing the potent bisphosphonate zoledronic acid (ZA) or the receptor activator of NF‐ÎșB ligand (RANKL) inhibitor OPG‐Fc, utilizing previously published ONJ animal models. Mice were treated with vehicle (veh), ZA, or OPG‐Fc for 11 weeks to induce ONJ, and antiresorptives were discontinued for 6 or 10 weeks. Maxillae and mandibles were examined by ÎŒCT imaging and histologically. ONJ features in ZA and OPG‐Fc groups included periosteal bone deposition, empty osteocyte lacunae, osteonecrotic areas, and bone exposure, each of which substantially resolved 10 weeks after discontinuing OPG‐Fc but not ZA. Full recovery of tartrate‐resistant acid phosphatase‐positive (TRAP+) osteoclast numbers occurred after discontinuing OPG‐Fc but not ZA. Our data provide the first experimental evidence demonstrating that discontinuation of a RANKL inhibitor, but not a bisphosphonate, reverses features of osteonecrosis in mice. It remains unclear whether antiresorptive discontinuation increases the risk of skeletal‐related events in patients with bone metastases or fracture risk in osteoporosis patients, but these preclinical data may nonetheless help to inform discussions on the rationale for a “drug holiday” in managing the ONJ patient. © 2015 American Society for Bone and Mineral Research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/113163/1/jbmr2490-sup-0001-SupFigLeg-S1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/113163/2/jbmr2490.pd

    Mechanical environment alters tissue formation patterns during fracture repair

    Full text link
    Fracture repair has previously been shown to be sensitive to mechanical environment, yet the specific relationship between strain character, magnitude and frequency, as well as other mechanical parameters, and tissue formation is not well understood. This study aimed to correlate strain distribution within the healing fracture gap with patterns of tissue formation using a rat model of a healing osteotomy subject to mechanical stimulation in bending. Finite element models based on realistic tissue distributions were used to estimate both the magnitude and spatial distribution of strains within the fracture gap. The spatial distribution of regenerating tissue was determined by microcomputed tomography and histology, and was confirmed using reverse transcription-polymerase chain reaction (RT-PCR). Results suggest that tensile strains suppress chondrogenesis during the mechanical stimulation period. After stimulation ends, however, tensile strains increased chondrogenesis followed by rapid bone formation. In contrast, in compressive environments, bone is formed primarily via intramembranous ossification. Taken together, these results suggest that intermittent tensile strains during fracture repair stimulate endochondral ossification and promote eventual bone healing compared to intermittent compressive strains and unstimulated fractures. Further understanding of these relationships may allow proposal of optimal therapeutic strategies for improvement of the fracture repair process. © 2004 Orthopaedic Research Society. Published y Elsevier Ltd. All rights reserved.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34921/1/1100220523_ftp.pd

    Osteoprotegerin inhibits bone resorption and prevents tumor development in a xenogenic model of Ewing's sarcoma by inhibiting RANKL

    Get PDF
    Ewing's sarcoma (ES) associated with high osyeolytic lesions typically arises in the bones of children and adolescents. The development of multi-disciplinary therapy has increased current long-term survival rates to greater than 50% but only 20% for high risk group patients (relapse, metastases, etc.). Among new therapeutic approaches, osteoprotegerin (OPG), an anti-bone resorption molecule may represent a promising candidate to inhibit RANKL-mediated osteolytic component of ES and consequently to limit the tumor development. Xenogenic orthotopic models of Ewing's sarcoma were induced by intra-osseous injection of human TC-71 ES cells. OPG was administered in vivo by non-viral gene transfer using an amphiphilic non ionic block copolymer. ES bearing mice were assigned to controls (no treatment, synthetic vector alone or F68/empty pcDNA3.1 plasmid) and hOPG treated groups. A substantial but not significant inhibition of tumor development was observed in the hOPG group as compared to control groups. Marked bone lesions were revealed by micro-computed tomography analyses in control groups whereas a normal bone microarchitecture was preserved in the hOPG treated group. RANKL over-expressed in ES animal model was expressed by tumor cells rather than by host cells. However, TRAIL present in the tumor microenvironment may interfere with OPG effect on tumor development and bone remodeling via RANKL inhibition. In conclusion, the use of a xenogenic model of Ewing's sarcoma allowed discriminating between the tumor and host cells responsible for the elevation of RANKL production observed in this tumor and demonstrated the relevance of blocking RANKL by OPG as a promising therapy in ES
    • 

    corecore