25 research outputs found

    Sex-associated effect of CETP and LPL polymorphisms on postprandial lipids in familial hypercholesterolaemia

    Get PDF
    Background: This study assessed the gender-specific influence of the cholesteryl ester transfer protein (TaqIB, I405V) and lipoprotein lipase (S447X) polymorphisms on the response to an oral fat tolerance test in heterozygotes for familial hypercholesterolaemia.Methods: We selected and genotyped 80 men and postmenopausal women heterozygous for familial hypercholesterolaemia (main group) as well as 11 healthy control subjects. Patients were subgrouped based on their response to oral fat tolerance test. The oral fat tolerance test was defined as pathological when postprandial triglyceride concentration was higher than the highest triglyceride concentration observed in healthy subjects (220 mg/dl) at any time (2, 4, 6 or 8 h).Results: In the pathological subgroup, men had significantly higher incremental area under the curve after oral fat tolerance test than postmenopausal women. Furthermore, multivariate analysis revealed a gender association of TaqIB and I405V influence on postprandial lipaemia in this subgroup.Conclusion: In conclusion, it seems that gender and TaqIB polymorphism of the cholesteryl ester transfer protein gene were both associated with the distribution of triglyceride values after oral fat tolerance test, only in subjects with a pathological response to oral fat tolerance test. Specifically, men carrying the B2 allele of the TaqIB polymorphism showed a higher postprandial triglyceride peak and a delayed return to basal values compared with women carrying B2. However, further investigations in larger populations are required to replicate and confirm these findings

    Amyloid beta is associated with carotid wall echolucency and atherosclerotic plaque composition

    Get PDF
    \ua9 The Author(s) 2024.Circulating amyloid-beta 1–40 (Αb40) has pro-atherogenic properties and could serve as a biomarker in atherosclerotic cardiovascular disease (ASCVD). However, the association of Ab40 levels with morphological characteristics reflecting atherosclerotic plaque echolucency and composition is not available. Carotid atherosclerosis was assessed in consecutively recruited individuals without ASCVD (n = 342) by ultrasonography. The primary endpoint was grey scale median (GSM) of intima-media complex (IMC) and plaques, analysed using dedicated software. Vascular markers were assessed at two time-points (median follow-up 35.5 months). In n = 56 patients undergoing carotid endarterectomy, histological plaque features were analysed. Plasma Αb40 levels were measured at baseline. Ab40 was associated with lower IMC GSM and plaque GSM and higher plaque area at baseline after multivariable adjustment. Increased Ab40 levels were also longitudinally associated with decreasing or persistently low IMC and plaque GSM after multivariable adjustment (p < 0.05). In the histological analysis, Ab40 levels were associated with lower incidence of calcified plaques and plaques without high-risk features. Ab40 levels are associated with ultrasonographic and histological markers of carotid wall composition both in the non-stenotic arterial wall and in severely stenotic plaques. These findings support experimental evidence linking Ab40 with plaque vulnerability, possibly mediating its established association with major adverse cardiovascular events

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Inhibition of thyroid hormone receptor α1 impairs post-ischemic cardiac performance after myocardial infarction in mice

    No full text
    Thyroid hormone receptor α1 (TRα1) is shown to be critical for the maturation of cardiomyocytes and for the cellular response to stress. TRα1 is altered during post ischemic cardiac remodeling but the physiological significance of this response is not fully understood. Thus, the present study explored the potential consequences of selective pharmacological inhibition of TRα1 on the mechanical performance of the post-infarcted heart. Acute myocardial infarction was induced in mice (AMI), while sham operated animals served as controls (SHAM). A group of mice was treated with debutyl-dronedarone (DBD), a selective TRα1 inhibitor (AMI-DBD). AMI resulted in low T3 levels in plasma and in down-regulation of TRα1 and TRβ1 expression. Left ventricular ejection fraction (LVEF%) was significantly reduced in AMI [33 (SEM 2.1) vs 79(2.5) in SHAM, p < 0.05] and was further declined in AMI-DBD [22(1.1) vs 33(2.1), respectively, p < 0.05]. Cardiac mass was increased in AMI but not in AMI-DBD hearts, resulting in significant increase in wall tension index. This increase in wall stress was accompanied by marked activation of p38 MAPK, a kinase that is sensitive to mechanical stretch and exerts negative inotropic effect. Furthermore, AMI resulted in β-myosin heavy chain overexpression and reduction in the ratio of SR(Ca)ATPase to phospholamban (PLB). The latter further declined in AMI-DBD mainly due to increased expression of PLB. AMI induces downregulation of thyroid hormone signaling and pharmacological inhibition of TRα1 further depresses post-ischemic cardiac function. p38 MAPK and PLB may, at least in part, be involved in this response. © 2013 Springer Science+Business Media New York

    Thyroid hormone improves the mechanical performance of the post-infarcted diabetic myocardium: A response associated with up-regulation of Akt/mTOR and AMPK activation

    No full text
    Objective Thyroid hormone (TH) is shown to be protective against cardiac and pancreatic injury. Thus, this study explored the potential effects of TH treatment on the functional status of the postinfarcted diabetic myocardium. Diabetic patients have worse prognosis after acute myocardial infarction (AMI). Materials/Methods AMI was induced by left coronary ligation in rats previously treated with 35 mg/kg streptozotocin (STZ), (DM-AMI). TH treatment was initiated at 2 weeks after AMI and continued for 6 weeks (DM-AMI + TH), while sham-operated animals served as control (DM-SHAM). Results TH treatment increased cardiac mass, improved wall stress and favorably changed cardiac geometry. TH significantly increased echocardiographic left ventricular ejection fraction (LVEF%): [54.2 (6.5) for DM-AMI + TH vs 37 (2.0) for DM-AMI, p < 0.05]. TH treatment resulted in significantly increased insulin and decreased glucose levels in serum. The ratios of phosphorylated (p)-Akt/total Akt and p-mTOR/total mTOR were increased 2.0 fold and 2.7 fold in DM-AMI + TH vs DM-AMI respectively, p < 0.05. Furthermore, the ratio of p-AMPK/total AMPK was found to be increased 1.6 fold in DM-AMI + TH vs DM-AMI, p < 0.05. Conclusion TH treatment improved the mechanical performance of the post-infarcted myocardium in rats with STZ-induced diabetes, an effect which was associated with Akt/mTOR and AMPK activation. © 2013 Elsevier Inc

    Dose-dependent effects of thyroid hormone on post-ischemic cardiac performance: Potential involvement of Akt and ERK signalings

    No full text
    The present study explored the effects of thyroid hormone (TH) treatment on post-ischemic cardiac function and potential implicated mechanisms. Acute myocardial infarction (AMI) was induced in mice by coronary artery ligation while sham-operated animals served as controls. This procedure resulted in a marked depression of cardiac function and significant reduction in TH levels in plasma. TH was given at a dose aiming to normalize T3 levels in plasma [AMI-TH (A)] and also at higher doses. The group of animals treated with the highest dose of TH, which displayed significantly increased mortality rate was included in the study [AMI-TH (B)]. In AMI-TH (A) mice, TH significantly improved left ventricular (LV) ejection fraction (EF%), [27.9% (1.4) in AMI versus 38.0 (3.1) in AMI-TH (A), P < 0.05], and favorably remodeled LV chamber while α-MHC was the dominant isoform expressed. In AMI-TH (B) mice, TH treatment resulted in increased mortality as compared to untreated mice (73% vs 47%, P < 0.05), while the favorable effect of TH was not evident in the survived animals. At the molecular level, TH, at the replacement dose, modestly increased p-Akt levels in the myocardium without any change in p-ERK levels. On the contrary, TH at the higher dose resulted in further increase in p-Akt along with an increase in p-ERK levels. In conclusion, TH appears to have a dose-dependent bimodal effect on post-ischemic cardiac performance and this effect may, at least in part, be mediated by a distinct pattern of activation of Akt and ERK signaling. © 2011 Springer Science+Business Media, LLC
    corecore