371 research outputs found

    On Recognizing Transparent Objects in Domestic Environments Using Fusion of Multiple Sensor Modalities

    Full text link
    Current object recognition methods fail on object sets that include both diffuse, reflective and transparent materials, although they are very common in domestic scenarios. We show that a combination of cues from multiple sensor modalities, including specular reflectance and unavailable depth information, allows us to capture a larger subset of household objects by extending a state of the art object recognition method. This leads to a significant increase in robustness of recognition over a larger set of commonly used objects.Comment: 12 page

    Magnetic order in nanoscale gyroid networks

    Full text link
    Three-dimensional magnetic metamaterials feature interesting phenomena that arise from a delicate interplay of material properties, local anisotropy, curvature, and connectivity. A particularly interesting magnetic lattice that combines these aspects is that of nanoscale gyroids, with a highly-interconnected chiral network with local three-connectivity reminiscent of three-dimensional artificial spin ices. Here, we use finite-element micromagnetic simulations to elucidate the anisotropic behaviour of nanoscale nickel gyroid networks at applied fields and at remanence. We simplify the description of the micromagnetic spin states with a macrospin model to explain the anistropic global response, to quantify the extent of ice-like correlations, and to discuss qualitative features of the anisotropic magnetoresistance in the three-dimensional network. Our results demonstrate the large variability of the magnetic order in extended gyroid networks, which might enable future spintronic functionalities, including neuromorphic computing and non-reciprocal transport.Comment: 10 pages, 6 figure

    Responses of picoplankton to nutrient perturbation in the South China Sea, with special reference to the coast-wards distribution of Prochlorococcus

    Get PDF
    Responses of Prochlorococcus (Pro), Synechococcus (Syn), pico-eukaryotes (Euk) and heterotrophic bacteria (Bact) in pelagic marine ecosystems to external nutrient perturbations were examined using nitrogen- (N), phosphorus- (P), iron- (Fe), and cobalt- (Co) enriched incubations in the South China Sea in November 1997. Variations in abundance of the 4 groups of microorganism and cellular pigment content of the autotrophs during incubation were followed by flow-cytometric measurements for seven days. During the incubation, Syn and Euk showed a relatively higher demand on Fe and N, while Pro required higher levels of Co and P. The Fe was inadequate for all the organisms in the deep euphotic zone (75 m) of the study area. The experimental results also implied that biological interaction among the organisms played a role in the community structure shift during the incubation. It seemed that besides the effects of temperature, there are some other physical and chemical limitations as well as impacts from biological interactions on Pro distribution in coast waters

    Fabrication of Isolated Iron Nanowires

    Get PDF
    Nanoscale interconnects are an important component of molecular electronics. Here we use X-ray spectromicroscopy techniques as well as scanning probe methods to explore the self-assembled growth of insulated iron nanowires as a potential means of supplying an earth abundant solution. The intrinsic anisotropy of a TiO2(110) substrate directs the growth of micron length iron wires at elevated temperatures, with a strong metal-support interaction giving rise to ilmenite (FeTiO3) encapsulation. Iron nanoparticles that decorate the nanowires display magnetic properties that suggest other possible applications

    Ubiquitous organic molecule-based free-standing nanowires with ultra-high aspect ratios

    Get PDF
    ごくありふれた有機分子からナノ細線をつくり立たせて埋めつくす --立体電子回路や超高感度センサーへ--. 京都大学プレスリリース. 2021-06-30.The critical dimension of semiconductor devices is approaching the single-nm regime, and a variety of practical devices of this scale are targeted for production. Planar structures of nano-devices are still the center of fabrication techniques, which limit further integration of devices into a chip. Extension into 3D space is a promising strategy for future; however, the surface interaction in 3D nanospace make it hard to integrate nanostructures with ultrahigh aspect ratios. Here we report a unique technique using high-energy charged particles to produce free-standing 1D organic nanostructures with high aspect ratios over 100 and controlled number density. Along the straight trajectory of particles penetrating the films of various sublimable organic molecules, 1D nanowires were formed with approximately 10~15 nm thickness and controlled length. An all-dry process was developed to isolate the nanowires, and planar or coaxial heterojunction structures were built into the nanowires. Electrical and structural functions of the developed standing nanowire arrays were investigated, demonstrating the potential of the present ultrathin organic nanowire systems

    Citizen Science Observation of a Gamma‐Ray Glow Associated With the Initiation of a Lightning Flash

    Get PDF
    シチズンサイエンスで挑む雷の謎 --宇宙線と雷雲の相互作用は、雷の始まりに影響を与えるのか?--. 京都大学プレスリリース. 2023-07-10.Zeus also plays billiards: Citizen-supported Thundercloud Project may lead to better understanding of lightning's origins. 京都大学プレスリリース. 2023-07-12.Gamma-ray glows are observational evidence of relativistic electron acceleration due to the electric field in thunderclouds. However, it is yet to be understood whether such relativistic electrons contribute to the initiation of lightning discharges. To tackle this question, we started the citizen science “Thundercloud Project, ” where we map radiation measurements of glows from winter thunderclouds along Japan's sea coast area. We developed and deployed 58 compact gamma-ray monitors at the end of 2021. On 30 December 2021, five monitors simultaneously detected a glow with its radiation distribution horizontally extending for 2 km. The glow terminated coinciding with a lightning flash at 04:08:34 JST, which was recorded by the two radio-band lightning mapping systems, FALMA and DALMA. The initial discharges during the preliminary breakdown started above the glow, that is, in vicinity of the electron acceleration site. This result provides one example of possible connections between electron acceleration and lightning initiation

    Initiation of human colon cancer cell proliferation by trypsin acting at protease-activated receptor-2

    Get PDF
    The protease-activated receptor-2 (PAR-2) is a G protein-coupled receptor that is cleaved and activated by trypsin. We investigated the expression of PAR-2 and the role of trypsin in cell proliferation in human colon cancer cell lines. A total of 10 cell lines were tested for expression of PAR-2 mRNA by Northern blot and RT-PCR. PAR-2 protein was detected by immunofluorescence. Trypsin and the peptide agonist SLIGKV (AP2) were tested for their ability to induce calcium mobilization and to promote cell proliferation on serum-deprived cells. PAR-2 mRNA was detected by Northern blot analysis in 6 out of 10 cell lines [HT-29, Cl.19A, Caco-2, SW480, HCT-8 and T84]. Other cell lines expressed low levels of transcripts, which were detected only by RT-PCR. Further results were obtained with HT-29 cells: (1) PAR-2 protein is expressed at the cell surface; (2) an increase in intracellular calcium concentration was observed upon trypsin (1–100 nM) or AP2 (10–100 μM) challenges; (3) cells grown in serum-deprived media supplemented with trypsin (0.1–1 nM) or AP2 (1–300 μM) exhibited important mitogenic responses (3-fold increase of cell number). Proliferative effects of trypsin or AP2 were also observed in other cell lines expressing PAR-2. These data show that subnanomolar concentrations of trypsin, acting at PAR-2, promoted the proliferation of human colon cancer cells. The results of this study indicate that trypsin could be considered as a growth factor and unravel a new mechanism whereby serine proteases control colon tumours. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    Contribution of spores to the ability of Clostridium difficile to adhere to surfaces.

    Get PDF
    Clostridium difficile is the commonest cause of hospital-acquired infection in the United Kingdom. We characterized the abilities of 21 clinical isolates to form spores; to adhere to inorganic and organic surfaces, including stainless steel and human adenocarcinoma cells; and to germinate. The composition of culture media had a significant effect on spore formation, as significantly more spores were produced in brain heart infusion broth (Student's t test; P = 0.018). The spore surface relative hydrophobicity (RH) varied markedly (14 to 77%) and was correlated with the ability to adhere to stainless steel. We observed no correlation between the ribotype and the ability to adhere to steel. When the binding of hydrophobic (DS1813; ribotype 027; RH, 77%) and hydrophilic (DS1748; ribotype 002; RH, 14%) spores to human gut epithelial cells at different stages of cell development was examined, DS1813 spores adhered more strongly, suggesting the presence of surface properties that aid attachment to human cells. Electron microscopy studies revealed the presence of an exosporium surrounding DS1813 spores that was absent from spores of DS1748. Finally, the ability of spores to germinate was found to be strain and medium dependent. While the significance of these findings to the disease process has yet to be determined, this study has highlighted the importance of analyzing multiple isolates when attempting to characterize the behavior of a bacterial species
    corecore