Magnetic order in nanoscale gyroid networks

Abstract

Three-dimensional magnetic metamaterials feature interesting phenomena that arise from a delicate interplay of material properties, local anisotropy, curvature, and connectivity. A particularly interesting magnetic lattice that combines these aspects is that of nanoscale gyroids, with a highly-interconnected chiral network with local three-connectivity reminiscent of three-dimensional artificial spin ices. Here, we use finite-element micromagnetic simulations to elucidate the anisotropic behaviour of nanoscale nickel gyroid networks at applied fields and at remanence. We simplify the description of the micromagnetic spin states with a macrospin model to explain the anistropic global response, to quantify the extent of ice-like correlations, and to discuss qualitative features of the anisotropic magnetoresistance in the three-dimensional network. Our results demonstrate the large variability of the magnetic order in extended gyroid networks, which might enable future spintronic functionalities, including neuromorphic computing and non-reciprocal transport.Comment: 10 pages, 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions