42 research outputs found

    Spinal cord stimulator malfunction caused by radiofrequency neuroablation -A case report-

    Get PDF
    The implantation of spinal cord stimulators (SCSs) to treat chronic intractable pain is steadily increasing. And there is an increased likelihood of instances where other therapies or procedures are found to interfere with SCS function, which in turn may result in pain. Since SCS utilize electric impulses as well as magnets, special considerations need for patients with a SCS in situ who require these procedures. The present report describes a case where radiofrequency (RF) ablation of the third occipital nerve resulted in spontaneous activation of a cervical SCS device

    Immunohistochemistry of angiogenesis mediators before and after pulsed dye laser treatment of angiomas

    Full text link
    BACKGROUND AND OBJECTIVE: Tissue effects of vascular lesion laser treatment are incompletely understood. Injury caused by pulsed dye laser (PDL) treatment may result in altered expression of mediators associated with angiogenesis. MATERIALS AND METHODS: Eight human subjects had one angioma treated with PDL (7 mm, 1.5 millisecond pulse duration, 9 J/cm(2), cryogen spray cooling of 30 millisecond with a 30 millisecond delay). One week later, three biopsies were taken: normal skin, untreated angioma, angioma post-PDL. Tissue was frozen and sections processed for immunohistochemistry staining of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), matrix metalloproteinase 9 (MMP-9), and angiopoietin 2 (ANG-2). Images were graded in a blinded fashion by a board certified dermatopathologist. RESULTS: There were no clear trends in VEGF expression in the epidermis, dermis, or endothelial cells. As compared to normal skin, angiomas demonstrated the following: bFGF was decreased in the epidermis; MMP-9 was decreased or unchanged in the epidermis and increased in the endothelial cells; ANG-2 was increased in the endothelial cells. When comparing normal skin to angiomas + PDL, bFGF was decreased in the epidermis and increased in the dermis; MMP-9 was decreased or unchanged in the epidermis; ANG-2 was again increased in the endothelial cells. Comparison of staining in angioma to angioma + PDL samples revealed increased dermal bFGF expression. CONCLUSION: Alterations in angiogenesis mediators were noted after PDL. Angiogenesis mediator changes associated with PDL treatment differed from those previously reported for incisional biopsies. This pilot study can guide future work on laser-induced alterations in vascular lesions and such information may ultimately be used to optimize treatment outcomes. Lasers Surg. Med. 44:205–210, 2012

    Efficacy of c-Met inhibitor for advanced prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aberrant expression of HGF/SF and its receptor, c-Met, often correlates with advanced prostate cancer. Our previous study showed that expression of c-Met in prostate cancer cells was increased after attenuation of androgen receptor (AR) signalling. This suggested that current androgen ablation therapy for prostate cancer activates c-Met expression and may contribute to development of more aggressive, castration resistant prostate cancer (CRPC). Therefore, we directly assessed the efficacy of c-Met inhibition during androgen ablation on the growth and progression of prostate cancer.</p> <p>Methods</p> <p>We tested two c-Met small molecule inhibitors, PHA-665752 and PF-2341066, for anti-proliferative activity by MTS assay and cell proliferation assay on human prostate cancer cell lines with different levels of androgen sensitivity. We also used renal subcapsular and castrated orthotopic xenograft mouse models to assess the effect of the inhibitors on prostate tumor formation and progression.</p> <p>Results</p> <p>We demonstrated a dose-dependent inhibitory effect of PHA-665752 and PF-2341066 on the proliferation of human prostate cancer cells and the phosphorylation of c-Met. The effect on cell proliferation was stronger in androgen insensitive cells. The c-Met inhibitor, PF-2341066, significantly reduced growth of prostate tumor cells in the renal subcapsular mouse model and the castrated orthotopic mouse model. The effect on cell proliferation was greater following castration.</p> <p>Conclusions</p> <p>The c-Met inhibitors demonstrated anti-proliferative efficacy when combined with androgen ablation therapy for advanced prostate cancer.</p

    The Anatomic Relationship of the Tibial Nerve to the Common Peroneal Nerve in the Popliteal Fossa: Implications for Selective Tibial Nerve Block in Total Knee Arthroplasty

    No full text
    Background. A recently described selective tibial nerve block at the popliteal crease presents a viable alternative to sciatic nerve block for patients undergoing total knee arthroplasty. In this two-part investigation, we describe the effects of a tibial nerve block at the popliteal crease. Methods. In embalmed cadavers, after the ultrasound-guided dye injection the dissection revealed proximal spread of dye within the paraneural sheath. Consequentially, in the clinical study twenty patients scheduled for total knee arthroplasty received the ultrasound-guided selective tibial nerve block at the popliteal crease, which also resulted in proximal spread of local anesthetic. A sensorimotor exam was performed to monitor the effect on the peroneal nerve. Results. In the cadaver study, dye was observed to spread proximal in the paraneural sheath to reach the sciatic nerve. In the clinical observational study, local anesthetic was observed to spread a mean of 4.7+1.9 (SD) cm proximal to popliteal crease. A negative correlation was found between the excess spread of local anesthetic and bifurcation distance. Conclusions. There is significant proximal spread of local anesthetic following tibial nerve block at the popliteal crease with possibility of the undesirable motor blocks of the peroneal nerve
    corecore