9 research outputs found

    Using comparative genomic hybridization to survey genomic sequence divergence across species: a proof-of-concept from Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide analysis of sequence divergence among species offers profound insights into the evolutionary processes that shape lineages. When full-genome sequencing is not feasible for a broad comparative study, we propose the use of array-based comparative genomic hybridization (aCGH) in order to identify orthologous genes with high sequence divergence. Here we discuss experimental design, statistical power, success rate, sources of variation and potential confounding factors. We used a spotted PCR product microarray platform from <it>Drosophila melanogaster </it>to assess sequence divergence on a gene-by-gene basis in three fully sequenced heterologous species (<it>D. sechellia</it>, <it>D. simulans</it>, and <it>D. yakuba</it>). Because complete genome assemblies are available for these species this study presents a powerful test for the use of aCGH as a tool to measure sequence divergence.</p> <p>Results</p> <p>We found a consistent and linear relationship between hybridization ratio and sequence divergence of the sample to the platform species. At higher levels of sequence divergence (< 92% sequence identity to <it>D. melanogaster</it>) ~84% of features had significantly less hybridization to the array in the heterologous species than the platform species, and thus could be identified as "diverged". At lower levels of divergence (≥ 97% identity), only 13% of genes were identified as diverged. While ~40% of the variation in hybridization ratio can be accounted for by variation in sequence identity of the heterologous sample relative to <it>D. melanogaster</it>, other individual characteristics of the DNA sequences, such as GC content, also contribute to variation in hybridization ratio, as does technical variation.</p> <p>Conclusions</p> <p>Here we demonstrate that aCGH can accurately be used as a proxy to estimate genome-wide divergence, thus providing an efficient way to evaluate how evolutionary processes and genomic architecture can shape species diversity in non-model systems. Given the increased number of species for which microarray platforms are available, comparative studies can be conducted for many interesting lineages in order to identify highly diverged genes that may be the target of natural selection.</p

    Discovery-based science education: functional genomic dissection in Drosophila by undergraduate researchers.

    Get PDF
    How can you combine professional-quality research with discovery-based undergraduate education? The UCLA Undergraduate Consortium for Functional Genomics provides the answe

    Example of the Type of Data Available from the Online Database (http://www.bruinfly.ucla.edu)

    No full text
    <p>Example of the Type of Data Available from the Online Database (<a href="http://www.bruinfly.ucla.edu" target="_blank">http://www.bruinfly.ucla.edu</a>)</p

    Discovery-Based Science Education: Functional Genomic Dissection in Drosophila by Undergraduate Researchers

    No full text
    Discovery-Based Science Education: Functional Genomic Dissection in Drosophila by Undergraduate Researcher

    Representative Pictures from the Laboratory Section of the Course

    No full text
    <p>Representative Pictures from the Laboratory Section of the Course</p

    Genomewide Clonal Analysis of Lethal Mutations in the Drosophila melanogaster Eye: Comparison of the X Chromosome and Autosomes

    No full text
    Using a large consortium of undergraduate students in an organized program at the University of California, Los Angeles (UCLA), we have undertaken a functional genomic screen in the Drosophila eye. In addition to the educational value of discovery-based learning, this article presents the first comprehensive genomewide analysis of essential genes involved in eye development. The data reveal the surprising result that the X chromosome has almost twice the frequency of essential genes involved in eye development as that found on the autosomes
    corecore