380 research outputs found

    Final flight performance prediction for Saturn AS-206 /mission 276/ propulsion system S-1B-6 stage

    Get PDF
    Final flight performance prediction for Saturn AS-206, Mission 276, propulsion system, S-1B-6 stag

    Yeast Infections after Esophagectomy:A Retrospective Analysis

    Get PDF
    Esophageal malignancy is a disease with poor prognosis. Curative therapy incorporates surgery and is burdensome with high rates of infection morbidity and mortality. The role of yeast as causative organisms of post-esophagectomy infections is poorly defined. Consequently, the benefits of specific antifungal prophylactic therapy in improving patient outcome are unclear. Therefore, this study aimed at investigating the incidence of yeast infections at the University Medical Center Groningen among 565 post-esophagectomy patients between 1991 and 2017. The results show that 7.3% of the patients developed a yeast infection after esophageal resection with significantly increased incidence among patients suffering from diabetes mellitus. For patients with yeast infections, higher Acute Physiology and Chronic Health Evaluation (APACHE) II scores, more frequent intensive care unit readmissions, prolonged hospital stays and higher mortality rates were observed. One-year survival was significantly lower for patients with a yeast infection, as well as diabetes mellitus and yeast-positive pleural effusion. We conclude that the incidence of yeast infections following esophagectomy is considerable, and that patients with diabetes mellitus are at increased risk. Furthermore, yeast infections are associated with higher complication rates and mortality. These observations encourage further prospective investigations on the possible benefits of antifungal prophylactic therapy for esophagectomy patients

    Back in Time? A Temporal Autobiographical Approach to Afghan Return Migration

    Get PDF
    Repatriation programmes for refugees and asylum seekers are based on the assumption that going ‘home’ is the most desirable thing to do to restore the social order that was disrupted by conflict. Yet the often-limited success of these programmes as migration management solutions, shown in poor reintegration results and re-emigration, shows that there is a need for a better understanding of the lived experiences of (return) migrants. This article studies Afghan managed and “spontaneous” return migrants from Europe through an innovative temporal autobiographical approach, using both verbal and creative participatory narrative methods. I find that some migration movements were experienced as disruptive, while others were not, and that return sometimes meant a return to a previous life, sometimes a continuation, and sometimes the start of something new. I conclude that migration management programmes aimed towards “durable solutions” and the wellbeing of returnees should enable rather than constrain post-return mobility

    Capturing the cloud of diversity reveals complexity and heterogeneity of MRSA carriage, infection and transmission.

    Get PDF
    Genome sequencing is revolutionizing clinical microbiology and our understanding of infectious diseases. Previous studies have largely relied on the sequencing of a single isolate from each individual. However, it is not clear what degree of bacterial diversity exists within, and is transmitted between individuals. Understanding this 'cloud of diversity' is key to accurate identification of transmission pathways. Here, we report the deep sequencing of methicillin-resistant Staphylococcus aureus among staff and animal patients involved in a transmission network at a veterinary hospital. We demonstrate considerable within-host diversity and that within-host diversity may rise and fall over time. Isolates from invasive disease contained multiple mutations in the same genes, including inactivation of a global regulator of virulence and changes in phage copy number. This study highlights the need for sequencing of multiple isolates from individuals to gain an accurate picture of transmission networks and to further understand the basis of pathogenesis.Thanks to Dr Alex O’Neill, University of Leeds and Dr Matthew Ellington, Public Health England for provision of RN4220 and RN4200mutS. We thank the core sequencing and informatics team at the Wellcome Trust Sanger Institute for sequencing of the isolates described in this study. This work was supported by a Medical Research Council Partnership grant (G1001787/1) held between the Department of Veterinary Medicine, University of Cambridge (M.A.H.), the School of Clinical Medicine, University of Cambridge (S.J.P.), the Moredun Research Institute, and the Wellcome Trust Sanger Institute (J.P. and S.J.P). S.J.P. receives support from the NIHR Cambridge Biomedical Research Centre. M.T.G.H., S.R.H. and J.P. were funded by Wellcome Trust grant no. 098051. G.G.R.M. was funded by an MRC studentship.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms756

    Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo.

    Get PDF
    Collective cell migration is essential for morphogenesis, tissue remodelling and cancer invasion. In vivo, groups of cells move in an orchestrated way through tissues. This movement involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in collective cell migration is comparatively well understood, how tissue mechanics influence collective cell migration in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiates an epithelial-to-mesenchymal transition in neural crest cells and triggers their collective migration. To detect changes in their mechanical environment, neural crest cells use mechanosensation mediated by the integrin-vinculin-talin complex. By performing mechanical and molecular manipulations, we show that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrate that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results show that convergent extension of the mesoderm has a role as a mechanical coordinator of morphogenesis, and reveal a link between two apparently unconnected processes-gastrulation and neural crest migration-via changes in tissue mechanics. Overall, we demonstrate that changes in substrate stiffness can trigger collective cell migration by promoting epithelial-to-mesenchymal transition in vivo. More broadly, our results raise the idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis

    Paying Refugees to Leave

    Get PDF
    States are increasingly paying refugees to repatriate, hoping to decrease the number of refugees residing within their borders. Drawing on in-depth interviews from East Africa and data from Israeli Labour Statistics, I provide a description of such payment schemes and consider whether they are morally permissible. In doing so, I address two types of cases. In the first type of case, governments pay refugees to repatriate to high-risk countries, never coercing them into returning. I argue that such payments are permissible if refugees’ choices are voluntary and if states allow refugees to return to the host country in the event of an emergency. I then describe cases where states detain refugees, and non-governmental organisations provide their own payments to refugees wishing to repatriate. In such cases, non-governmental organisations are only permitted to provide payments if the funds are sufficient to ensure post-return safety and if providing payments does not reinforce the government’s detention policy

    An integrated whole genome analysis of Mycobacterium tuberculosis reveals insights into relationship between its genome, transcriptome and methylome.

    Get PDF
    Human tuberculosis disease (TB), caused by Mycobacterium tuberculosis (Mtb), is a complex disease, with a spectrum of outcomes. Genomic, transcriptomic and methylation studies have revealed differences between Mtb lineages, likely to impact on transmission, virulence and drug resistance. However, so far no studies have integrated sequence-based genomic, transcriptomic and methylation characterisation across a common set of samples, which is critical to understand how DNA sequence and methylation affect RNA expression and, ultimately, Mtb pathogenesis. Here we perform such an integrated analysis across 22 M. tuberculosis clinical isolates, representing ancient (lineage 1) and modern (lineages 2 and 4) strains. The results confirm the presence of lineage-specific differential gene expression, linked to specific SNP-based expression quantitative trait loci: with 10 eQTLs involving SNPs in promoter regions or transcriptional start sites; and 12 involving potential functional impairment of transcriptional regulators. Methylation status was also found to have a role in transcription, with evidence of differential expression in 50 genes across lineage 4 samples. Lack of methylation was associated with three novel variants in mamA, likely to cause loss of function of this enzyme. Overall, our work shows the relationship of DNA sequence and methylation to RNA expression, and differences between ancient and modern lineages. Further studies are needed to verify the functional consequences of the identified mechanisms of gene expression regulation

    Mechanosensing is critical for axon growth in the developing brain.

    Get PDF
    During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signaling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding. In vitro, substrate stiffness determined growth patterns of Xenopus retinal ganglion cell axons. In vivo atomic force microscopy revealed a noticeable pattern of stiffness gradients in the embryonic brain. Retinal ganglion cell axons grew toward softer tissue, which was reproduced in vitro in the absence of chemical gradients. To test the importance of mechanical signals for axon growth in vivo, we altered brain stiffness, blocked mechanotransduction pharmacologically and knocked down the mechanosensitive ion channel piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness, read out by mechanosensitive ion channels, is critically involved in instructing neuronal growth in vivo.This work was supported by the German National Academic Foundation (scholarship to D.E.K.), Wellcome Trust and Cambridge Trusts (scholarships to A.J.T.), Winston Churchill Foundation of the United States (scholarship to S.K.F.), Herchel Smith Foundation (Research Studentship to S.K.F.), CNPq 307333/2013-2 (L.d.F.C.), NAP-PRP-USP and FAPESP 11/50761-2 (L.d.F.C.), UK EPSRC BT grant (J.G.), Wellcome Trust WT085314 and the European Research Council 322817 grants (C.E.H.); an Alexander von Humboldt Foundation Feodor Lynen Fellowship (K.F.), UK BBSRC grant BB/M021394/1 (K.F.), the Human Frontier Science Program Young Investigator Grant RGY0074/2013 (K.F.), the UK Medical Research Council Career Development Award G1100312/1 (K.F.) and the Eunice Kennedy Shriver National Institute Of Child Health & Human Development of the National Institutes of Health under Award Number R21HD080585 (K.F.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via https://doi.org/10.1038/nn.439
    corecore