698 research outputs found

    Distribution of landslides in southwest New Zealand

    Get PDF
    This study examines the size distribution of a regional medium-scale inventory of 778 landslides in the mountainous southwest of New Zealand. The spatial density of mapped landslides per unit area can be expressed as a negative power-law function of Landslide area AL spanning three orders of magnitude (∼10−2-101km2). Although observed in other studies on landslide inventories, this relationship is surprising, given the lack of absolute ages, and thus uncertainty about the temporal observation window encompassed by the data. Large slope failures (arbitrarily defined here as having a total affected area AL>1km2) constitute 83% of the total affected landslide area ALT. This dominance by area affects slope morphology, where large-scale landsliding reduces slope angles below the regional modal value of hillslopes, ϕmod∼39°. More numerous smaller and shallower failures tend to be superimposed on the pre-existing relief. Empirical scaling relationships show that large landslides involve >106m3 of material. The volumes VL of individual preserved and presumably prehistoric (i.e. pre-1840) landslide deposits equate to 100-102 years of total sediment production from shallow landsliding in the respective catchments, and up to 103 years of contemporary regional sediment yield from the mountain ranges. Their presence in an erosional landscape indicates the geomorphic importance of landslides as temporary local sediment storag

    Soil erosion and organic carbon export by wet snow avalanches

    Get PDF
    Many mountain belts sustain prolonged snow cover for parts of the year, although enquiries into rates of erosion in these landscapes have focused almost exclusively on the snow-free periods. This raises the question of whether annual snow cover contributes significantly to modulating rates of erosion in high-relief terrain. In this context, the sudden release of snow avalanches is a frequent and potentially relevant process, judging from the physical damage to subalpine forest ecosystems, and the amount of debris contained in avalanche deposits. To quantitatively constrain this visual impression and to expand the sparse literature, we sampled sediment concentrations of <i>n</i> = 28 river-spanning snow-avalanche deposits (snow bridges) in the area around Davos, eastern Swiss Alps, and inferred an orders-of-magnitude variability in specific fine sediment and organic carbon yields (1.8 to 830 t km<sup>−2</sup> yr<sup>−1</sup>, and 0.04 to 131 t C km<sup>−2</sup> yr<sup>−1</sup>, respectively). A Monte Carlo simulation demonstrates that, with a minimum of free parameters, such variability is inherent to the geometric scaling used for computing specific yields. Moreover, the widely applied method of linearly extrapolating plot scale sample data may be prone to substantial under- or overestimates. A comparison of our inferred yields with previously published work demonstrates the relevance of wet snow avalanches as prominent agents of soil erosion and transporters of biogeochemical constituents to mountain rivers. Given that a number of snow bridges persisted below the insulating debris cover well into the summer months, snow-avalanche deposits also contribute to regulating in-channel sediment and organic debris storage on seasonal timescales. Finally, our results underline the potential shortcomings of neglecting erosional processes in the winter and spring months in mountainous terrain subjected to prominent snow cover

    Methane Oxidation on Platinum Catalysts Investigated by Spatially Resolved Methods

    No full text

    Carbon formation in catalytic partial oxidation of methane on platinum: Model studies on a polycrystalline Pt foil

    No full text
    A polycrystalline Pt foil has been investigated as model catalyst in methane catalytic partial oxidation to synthesis gas. It is demonstrated that a substantial amount of carbonaceous deposits forms on the Pt foil upon reaction light-off blocking a large fraction of Pt surface atoms. By using in situ Raman spectroscopy and quantitative spectral analysis the evolution and spatial distribution of these carbonaceous compounds with reaction temperature and reaction time have been characterized. The chemical composition of the carbon material changes from highly reactive and strongly disordered directly after reaction light-off to highly ordered, oxidation and steam reforming resistant after several hours time on stream at 800 °C reaction temperature. Remarkably the carbon distribution at the Pt surface was found to be inhomogeneous and related to the nature of the microcrystals forming the polycrystalline foil in a yet unknown manner

    A global database of historic glacier lake outburst floods

    Get PDF
    Ongoing atmospheric warming has accelerated glacier mass loss in many mountain regions worldwide. Glacier lakes trap part of the glacial meltwater and have increased by about 50 % in number and area since the 1990s. Some of these glacier lakes may empty catastrophically and pose hazards to mountain communities, infrastructure, and habitats. Such glacier lake outburst floods (GLOFs) have caused millions of dollars of damages and fatalities and are one of many concerns about future changes in the magnitude, frequency, and impacts of processes of a shrinking mountain cryosphere. Consistently compiled inventories are thus vital to assess regional and local trends in GLOF occurrence, hazard, and risk. To this end, we studied 769 literature and internet sources and developed a standardized database with 57 attributes that describe and quantify the location, dam type, size, timing, and impacts of GLOFs in nine glaciated mountain regions. Our GLOF inventory also includes details about the lake area before and after the outburst for 391 cases that we manually mapped from optical satellite images since 1984. In total, we compiled 3151 reported GLOFs that occurred in 27 countries between 850 and 2022 CE. Most GLOFs have been reported in NW North America (26 %) and Iceland (19 %). However, the reporting density in our inventory varies. During the 20th century alone, the number of yearly documented GLOFs increased 6-fold. Less than one-quarter of all reported cases feature hydrodynamic characteristics such as flood peak discharge or volume or estimates of loss and damage. Our inventory more than doubles the number of reported GLOFs in a previous global inventory, though gaps in attributes remain. Our data collection process emphasizes the support of local experts in contributing previously undocumented cases, and we recommend applying protocols when reporting new cases. The global database on historic GLOFs is archived at https://doi.org/10.5281/zenodo.7330344 (Lützow and Veh, 2023a) and regularly updated at http://glofs.geoecology.uni-potsdam.de/ (last access: 9 May 2023).</p

    Event-based stochastic point rainfall resampling for statistical replication and climate projection of historical rainfall series

    Get PDF
    Continuous and long rainfall series are a necessity in rural and urban hydrology for analysis and design purposes. Local historical point rainfall series often cover several decades, which makes it possible to estimate rainfall means at different timescales, and to assess return periods of extreme events. Due to climate change, however, these series are most likely not representative of future rainfall. There is therefore a demand for climate-projected long rainfall series, which can represent a specific region and rainfall pattern as well as fulfil requirements of long rainfall series which includes climate changes projected to a specific future period. This paper presents a framework for resampling of historical point rainfall series in order to generate synthetic rainfall series, which has the same statistical properties as an original series. Using a number of key target predictions for the future climate, such as winter and summer precipitation, and representation of extreme events, the resampled historical series are projected to represent rainfall properties in a future climate. Climate-projected rainfall series are simulated by brute force randomization of model parameters, which leads to a large number of projected series. In order to evaluate and select the rainfall series with matching statistical properties as the key target projections, an extensive evaluation procedure is developed
    • …
    corecore