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Oxidative dehydrogenations (ODH) of saturated hydrocarbons to
olefins are characterized by a network of consecutive and parallel
reactions.
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To study the interrelation between catalytic performance and catalyst | Ao SO
structure we present spatial reactor profiles for ethane ODH on -
alumina supported MoOx as model catalyst and correlate them to the
catalyst structure studied by Raman spectroscopy of the quenched
catalystbed.

Catalyst preparation

Catalysts are prepared by incipient wetness from an aqueous solution
of Ammonium heptamolybdate tetrahydrate. For the 30 wt% catalyst
nine impregnation steps were necessary with 2 h drying at 120 °C
between each step followed by calcination at 540 °C in air for 12 h.

reaction temperature around 500 °C to minimize MoO5
sublimation

* 30 mm bed length with spheres of about 1 mm diameter
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+ after preparation (1) the spheres were activated for 1h
pure O, at 500 °C prior reaction resulting in the dehydrated
state (2)

* dependingon flow conditionsduring the reaction colorand
oxidationstate of the MoO, species changed (3)

7-alumina 30 wt% MoO, as function of positioninside the catalyst bed

BET surface area
decreased from

157 m?/g for the pure
support to 107 m¥/g
after calcination
butremains stable
underreaction.

* XRD diffractogramsof the “as prepared” 30 wt% MoOj, catalyst
(1) shows the presence of only y-alumina and Al,(MoO,); but
nocrystalline MoO; phase

* XRD analysis of the used catalyst(3) shows Al,(MoO,)s
speciesonlyin the reaction zone containinggas phase
oxygen (3 — grey spheres), the dark spheresin (3)
show MoO, as major species
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mechanism of ODH reactions.
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