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Abstract. Continuous and long rainfall series are a neces-
sity in rural and urban hydrology for analysis and design
purposes. Local historical point rainfall series often cover
several decades, which makes it possible to estimate rainfall
means at different timescales, and to assess return periods of
extreme events. Due to climate change, however, these series
are most likely not representative of future rainfall. There is
therefore a demand for climate-projected long rainfall series,
which can represent a specific region and rainfall pattern as
well as fulfil requirements of long rainfall series which in-
cludes climate changes projected to a specific future period.

This paper presents a framework for resampling of histori-
cal point rainfall series in order to generate synthetic rainfall
series, which has the same statistical properties as an original
series. Using a number of key target predictions for the future
climate, such as winter and summer precipitation, and repre-
sentation of extreme events, the resampled historical series
are projected to represent rainfall properties in a future cli-
mate. Climate-projected rainfall series are simulated by brute
force randomization of model parameters, which leads to a
large number of projected series. In order to evaluate and se-
lect the rainfall series with matching statistical properties as
the key target projections, an extensive evaluation procedure
is developed.

1 Introduction

In design of new and analysis of existing storm water
drainage systems valid rainfall statistics are crucial. With cli-
mate changes anticipated to impact precipitation patterns, the
historical rainfall statistics upon which the traditional design

is based, is no longer valid for future design. There is there-
fore a need for climate projection of the rainfall statistics in
order for these to represent the future loads on storm water
drainage systems.

Traditionally many simple urban drainage systems are
designed with intensity–duration–frequency (IDF) relation-
ships, or types of design storms (e.g. Unit Hydrograph: Sher-
man, 1932; Chicago Design Storm, CDS: Keifer and Chu,
1957; SCS: NRCS, 1986) which represent statistics for rain
with specific return periods. Climate projection of these types
of design methods can be relatively simple, e.g. by multiply-
ing the design rain by a bias climate factor (e.g. Semadeni-
Davies et al., 2008; Olsson et al., 2009; Willems et al., 2012a;
Willems, 2013b; Shahabul Alam and Elshorbagy, 2015), as-
suming that extreme rainfall events for a specific return pe-
riod will be increased linearly with a given factor as a func-
tion of time. The most recognized approach for estimating
climate factors is the downscaling of global circulation mod-
els (GCMs) and/or regional climate models (RCMs) (e.g.
Wilby and Wigley, 1997; Fowler et al., 2007).

In general, statistical downscaling determines a statisti-
cal relationship between a large- and a local-scale climate
variable based on historical records. The relationship can be
used in a GCM/RCM to obtain local variables for a spe-
cific domain in a given time frame of climate projection (e.g.
Wilby et al., 2002; Nguyen et al., 2007; Willems and Vrac,
2011; Willems et al., 2012b; Arnbjerg-Nielsen, 2012; Sunyer
et al., 2015). The statistical downscaling approach requires
long historical records of observations in order to establish
the necessary statistical relationships. Based on various types
of statistical downscaling assumptions and methods, climate
factors for urban drainage design purposes (e.g for multipli-
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cation on IDF relationships) can be derived by statistically
comparing contemporary climate conditions with projected
future rainfall with regards to specific return periods, and ag-
gregation levels (durations) or rainfall (e.g. Mailhot et al.,
2007; Larsen et al., 2009; Madsen et al., 2009; Nguyen et al.,
2009, 2010; Willems and Vrac, 2011; Olsson et al., 2012;
Willems, 2013b).

Whereas a large proportion of the recent research de-
scribed above has been conducted on estimating climate fac-
tors for design purposes, there is also a significant need, not
only to describe future extremes (e.g. in the form of IDF re-
lationships) but also to be able to project climate changes
to continuous rainfall time series. Basically, simple design
methods assume agreement between the return period of the
rain intensity (for a given duration), and on the other hand the
return period of the critical load in the drainage system (wa-
ter level, flow, basin storage, etc.). Multiplication of climate
factors to design storms, e.g. IDF relationships, is sufficient
for many applications of urban drainage design; however,
for more complex drainage systems with non-linear rainfall
runoff response the simple design methods falls short. That
is, for complex systems the return periods of the rainfall du-
ration and intensity are not in agreement with the return pe-
riods of the corresponding drainage system state. Therefore,
historical rainfall series (or climate-projected rainfall series)
are required for complex systems in order to estimate maxi-
mum water levels in manholes, flooding, to estimate the re-
turn periods, and other loads on the drainage system such as
outlet to recipient, inlet to wastewater treatment plants, com-
bined sewer overflow, outlet flow, and pollutants loads in the
future climate (e.g. Schaarup-Jensen et al., 2009; Thorndahl,
2009; Thorndahl et al., 2015).

According to Willems et al., (2012a, b) there are gener-
ally two methods that produce continuous climate-projected
time series either by (1) stochastic rainfall generators which
generate locally representative synthetic rainfall conditioned
on climate variables in present and future climate or (2) sta-
tistical approaches to downscaling such as change factor, re-
sampling or weather typing methods, in which future local
rainfall is sought in historical rainfall records under equiva-
lent historical climate conditions as projected in the future,
or modified to represent future climate conditions.

In the literature, the most acknowledged methods for
stochastically generating synthetic rainfall series are based
on Poisson cluster processes and rectangular pulse mod-
els such as Bartlett–Lewis (Koutsoyiannis and Onof, 2001;
Onof and Wheater, 1994, 1993; Segond et al., 2007; Onof
and Arnbjerg-Nielsen, 2009; Paschalis et al., 2014; Kossieris
et al., 2016) or Neyman–Scott (e.g. Entekhabi et al., 1989;
Cowpertwait, 1991, 2010; Cowpertwait et al., 2002; Fowler
et al., 2005; Burton et al., 2008; Paschalis et al., 2014; Sørup
et al., 2016). Calibration of the generators is typically per-
formed by comparing generated series to observed series
and adjusting relevant parameters prior to climate projection.
Methods for estimating point rainfall (e.g. Cowpertwait et al.,

1996; Marani and Zanetti, 2007; Onof and Arnbjerg-Nielsen,
2009) and spatially distributed rainfall or multi-site genera-
tors with spatial dependency (e.g. Kilsby et al., 2007; Burton
et al., 2008; Sørup et al., 2016) have been applied. These
methods have been shown to provide valid results for hourly
or daily time steps but also have significant shortcomings in
terms of modelling rainfall at a finer temporal resolution. For
urban hydrological applications with fast rainfall response,
a temporal resolution of input data down to 1–10 min is re-
quired (e.g. Schilling, 1991; Willems, 2000; Thorndahl et al.,
2008, 2016, 2017). Because we are interested in maintaining
the fine temporal resolution of observed rainfall series, gen-
eration of synthetic rainfall series using Poisson clusters is
rejected here as an applicable method.

Change factor, resampling or weather typing methods
(Willems et al., 2012a, b) of statistical downscaling outcomes
of RCMs/GCMs can provide data in the required tempo-
ral resolution, since directly based upon historical records.
Arnbjerg-Nielsen (2012) applied historical rain series orig-
inating from another geographical region, which had a cli-
mate analogue to the projected climate in order to obtain con-
tinuous representative rainfall series for future climate con-
ditions. Zorita and Von Storch (1999), Olsson et al. (2009),
Willems and Vrac (2011), and Ntegeka et al. (2014) used
historical records of rain and modified these records to repre-
sent climate-representative continuous climate-projected rain
series. Ntegeka et al. (2014) alternated the number of dry
and wet days and used quantile perturbation (an advanced
delta change method) to modify rainfall intensities. Olsson et
al. (2009) applied the delta change method to multiply his-
torical records with bias climate factors depending on rain-
fall intensity levels in order to fit projections of extreme, sea-
sonal, and annual precipitation. This approach, however, was
implemented without alternating the temporal variability and
the seasonal distribution of events of the rain series and main-
taining the chronology of the original series. This particular
shortcoming might be problematic in order to project the fre-
quency of extreme events sufficiently.

The approach presented in this paper is different from
the methods presented above, although it can be consid-
ered as a variation of resampling combined with stochastic
generation. Whereas other methods use other climate vari-
ables, e.g. pressure and temperature, as climate predictors,
this approach aims at fitting statistical properties of climate-
projected precipitation directly. In this case, these proper-
ties are derived from other studies of RCM projection (see
Sect. 2 for details). The validity of the method therefore de-
pends on whether the climate-projected target variables are
comprehensive and detailed enough to project the future rain-
fall upon. The aim is to develop a generally adaptive method
which can be applied to an arbitrary rainfall series and with
different climate scenarios and projection period. in contrast
to the studies described above, climate-projected time se-
ries are generated directly for urban drainage modelling pur-
poses. The objective has been to develop a generally applica-
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Table 1. The calculated Danish climate changes in annual and seasonal precipitation as well as extremes. The values are expressed as
a multiplicative climate factor describing the difference between the reference period 1961–1990 and 2071–2100. The A1B scenario is
presented in Olesen et al. (2014) and represents 14 regional climate model runs from the ENSEMBLES project. The climate factors from
the two RCP scenarios are previously unpublished, but derived from the Euro-CORDEX-11 database (Jacob et al., 2014) and processed
statistically for this paper. Standard deviation is listed in parentheses. The indices marked with bold are the ones used in this paper.

Climate factors for the period 2071–2100

Parameter Scenario A1B Scenario RCP4.5 Scenario RCP8.5
(Olesen et al., 2014) (unpublished) (unpublished)

Annual precipitation 1.14 (±0.06) 1.08 (±0.06) 1.14 (±0.07)
Winter precipitation (DJF) 1.25 (±0.06) 1.12 (±0.06) 1.24 (±0.07)
Spring precipitation (MAM) 1.13 (±0.06) 1.13 (±0.08) 1.23 (±0.11)
Summer precipitation (JJA) 1.05 (±0.08) 1.06 (±0.18) 1.03 (±0.21)
Fall precipitation (SON) 1.13 (±0.06) 1.05 (±0.07) 1.09 (±0.13)
Events above 10 mm 1.37 (±0.12) 1.20 (±0.13) 1.35 (±0.14)
Events above 20 mm 2.50 (±0.14) 1.41 (±0.30) 1.80 (±0.40)
Max. daily precipitation 1.16 (±0.12) 1.12 (±0.09) 1.24 (±0.11)

ble method that can be used directly by practitioners and sci-
entists within the field of urban drainage, who do not neces-
sarily have detailed knowledge of climate projection, RCM’s,
downscaling, etc.

The procedure is divided into two major parts: (1) resam-
pling of a historical point rainfall time series (“Method de-
velopment”: Sect. 3.1; “Results and evaluation”: Sect. 4.1);
and (2) climate projection of resampled time series (“Method
development”: Sect. 3.2; “Results and evaluation”: Sect. 4.2).

The essential concept of the method is to stochastically
generate a large number of either resampled historical se-
ries or climate-projected series, and to evaluate the statistical
properties of the generated series against a number of key tar-
get variables. Rather than optimizing for the best parameter
fit, the basic concept is to sample parameters from broad uni-
form distribution functions for each parameter and to either
accept or reject each stochastically simulated series using a
specified criterion. Repeating this procedure for a large num-
ber of realizations of rainfall series, it is possible to select
a number of rainfall series which has a satisfying statistical
representativeness in comparison with historical series or cli-
mate projection targets. The evaluation procedure is inspired
by the generalized likelihood uncertainty estimation (GLUE)
method (Beven and Binley, 1992; Thorndahl et al., 2008) and
is presented in detail in Sect. 3.3.

The method assumptions and subjectivity are discussed in
Sect. 5 and in Sect. 6 conclusions on this approach to cli-
mate projection of single-point historical rainfall series are
provided.

2 Data

The development of the model is based on rain gauge data
from Denmark and projection of Danish climate conditions,

but could easily be extended to other regions/countries of in-
terest.

Specific statistical properties for the future precipitation in
Denmark are necessary in order to climate project the resam-
pled rainfall series. In Olesen et al. (2014) the Danish Meteo-
rological Institute has collected and processed data from the
ENSEMBLES project (http://www.ensembles-eu.org/, http:
//ensemblesrt3.dmi.dk/; Van der Linden and Mitchell, 2009;
Boberg et al., 2010; Maule et al., 2013). The report includes
projection of weather extremes (including precipitation) us-
ing the SRES A1B scenario (IPCC, 2007) and is produced
from an ensemble of 14 regional climate models in the EN-
SEMBLES project. The RCMs are simulated for 1961–1990,
2021–2050, and 2071–2100, but in this case only the first
and last time interval are applied. Table 1 presents annual
and seasonal precipitation increment (expressed as a cli-
mate change factor) in 2071–2100 compared to the reference
in 1961–1990. Furthermore, the report specifies changes in
other climate indices. In the context of precipitation, the
variables number of events above 10 mm, number of events
above 20 mm, and max. daily precipitation are relevant (Ta-
ble 1). In this paper these three variables are used to climate-
project the resampled rainfall series, as they are considered
important with regards to urban drainage modelling. Because
the data from Olesen et al. (2014) represent the SRES sce-
narios (IPCC, 2007), new data representing the representa-
tive concentration pathway (RCP) scenarios (IPCC, 2013;
Christensen et al., 2015) are developed for this paper. Daily
RCM simulations from an ensemble of 14 models has been
derived over Denmark from the Euro-CORDEX database
(Casanueva et al., 2016; Jacob et al., 2014; Prein et al., 2016)
and statistically processed by the same variables as in Ole-
sen et al. (2014). Derived values are provided in Table 1. For
the climate projections in this paper the RCP4.5 scenario is
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Figure 1. Measured time series of the Sulsted rain gauge. The temporal resolution of rainfall data is 1 min.

Table 2. Recommended climate factors for design of drainage sys-
tems in Denmark according to WPC (2008, 2014) and Gregersen et
al. (2014b). The climate factors are valid for a duration of 1 h but
also recommended for other durations up to 3 h. The indices marked
with bold are the ones used in this paper. The standard deviations
are not provided directly in the references, but estimated from tables
and figures.

Climate factors for the period 2071–2100

Return period Scenario A2 Scenario RCP4.5 RCP8.5
(years) (WPC, 2008) (WPC, 2014) (WPC, 2014)

2 1.20 (±0.1) 1.20 (±0.1) 1.45 (±0.1)
10 1.30 (±0.2) 1.30 (±0.2) 1.70 (±0.2)
100 1.40 (±0.3) 1.40 (±0.3) 2.00 (±0.3)

chosen throughout, but the paper could easily have been pre-
sented with other SRES or RCP scenarios.

The Water Pollution Committee of the Society of Danish
Engineers has published reports (guidelines nos. 29 and 30)
with recommendations for design of drainage systems con-
sidering climate change (WPC, 2008, 2014, background re-
port: Gregersen et al., 2014b). Based also on the climate sim-
ulations of the ENSEMBLES project, the climate factors for
drainage system design in Denmark are recommended (Ta-
ble 2). Design rainfall, e.g. IDF relationships, with a speci-
fied return period is recommended to be multiplied by these
climate factors. The values are derived for rainfall intensi-
ties over 1 h but also recommended for other durations (up to
3 h). In this paper these values are used to certify a correct
representation of extreme events.

The rainfall series which are applied in this study has its
origin in the rain gauge network of the Water Pollution Com-
mittee (WPC) of the Society of Danish Engineers. At present,
the network consists of 145 tipping bucket rain gauges (DMI,
2014). The rain gauge no. 5047 located in Sulsted, North
Jutland (lat 57.17, long 9.96), is applied since this is a sta-
tion with a long recording time and few errors compared to

other gauge records. The gauge has been in operation over
a period of 34 years from 1979 to 2014, but due to minor
interruptions in the dataset, the effective length of the series
is 32 full years. The interruptions do not affect the statistical
calculations as these are excluded from the data before the
calculations are performed. The time series of 1 min. values
for the Sulsted rain gauge is shown in Fig. 1.

In the WPC rain gauge network the temporal resolution
of data is 1 min. The start time of an event is determined
at the minute of the first tip of 0.2 mm. All events therefore
have initial values equivalent to a multiple of 0.2 mm min−1

(12 mm h−1). These initial values are easily identifiable in
Fig. 1. The end of an event is specified when there is no reg-
istered tip within 1 h. Using this definition of events, the min-
imum inter-event time (time between events) will be 1 h.

Using Danish rainfall data on a daily scale Gregersen et
al. (2014a) have been able to identify multidecadal climate
oscillations (Ntegeka and Willems, 2008; Willems, 2013a) as
well as climate-related changes in precipitation patterns over
the past 140 years. Nevertheless, since this paper is based
on evidently shorter rainfall series, it is assumed that no sig-
nificant trends or climate changes in this period are present.
The historical records from the Sulsted series are therefore
assumed to be stationary in terms of climate properties.

3 Method development

The procedure of the method is presented in two sections:
the resampling of historical rainfall series (Sect. 3.1) and the
stochastic climate projection of resampled historical rainfall
series (Sect. 3.2). Since both methods involve random selec-
tion of events and brute force randomization of parameters
there is a need for a unique method to evaluate the generated
series against target values. This evaluation method is in-
spired by the GLUE methodology (Beven and Binley, 1992).
The basic concept is to generate a large number of rainfall
series and evaluate whether each generated series should be
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accepted or rejected based on an empirical likelihood (perfor-
mance) measure based on individual criteria for each target
value. For the accepted generated rainfall series a combined
performance measure for each realization is calculated in or-
der to find the rainfall series realization which in general fits
the target values the best. This method is described in detail
in Sect. 3.3.

3.1 Historical rainfall series resampling

The objective is to create synthetic rainfall series resampled
stochastically from a historical series such that the synthetic
and the historical series have the same statistical properties.
The first step is to divide the historical rainfall series into
smaller parts in order to describe variability of intensities,
event duration, and time between events over the year. We
chose to divide the series into four seasons (winter: DJF;
spring: MAM; summer: JJA; autumn: SON), although a finer
division (e.g. monthly) could have been implemented. Be-
cause the target projections (Table 1) are implemented in sea-
sons, this is the one used. The summer precipitation in the
synthetic rainfall series is thus generated based on statistics
calculated for every summer period’s precipitation in the his-
torical rainfall series and correspondingly for the other sea-
sons.

The stochastic generation (resampling) is based on the fol-
lowing:

1. Statistics of the inter-event time (also referred to as
rainfall intermittency, e.g. by Molini et al., 2001, and
Schleiss et al., 2011) using the definition of events pre-
sented in Sect. 2.

2. Sampling of rainfall events including original event du-
rations and intensities randomly from the pool of histor-
ical rain events for each season.

The concept is outlined in Fig. 2.
The inter-event times(tie) for each season are approxi-

mated by a two-component mixed exponential probability
density function:

λf (tie)= p
[
λa,ieexp

(
λa,ietie

)]
+ (1−p)

[
λb,ieexp

(
λb,ietie

)]
, (1)

where λa,ie and λb,ie are the rate parameters for two popu-
lations, “a” and “b”, with different exponential distributions
and p is the weight of population “a”. This mixed distribution
function was also applied by Rossi et al. (1984) and Willems
(2000). Willems (2000) applied the distribution for fitting
rainfall intensities arguing that the two distributions origi-
nated from two different types of storms (convective thunder
storms and frontal storms respectively). The same rationale
is applied here. The approximation to inter-event times for
each season thus require approximation of three parameters,
p, λa,ie, and λb,ie.

Figure 2. Diagram of the construction of the synthetic (resampled)
rainfall series.

Molini et al. (2001) applied a Weibull distribution to de-
scribe the inter-event time of rainfall events. The Weibull
distribution, along with exponential, gamma, and generalized
Pareto distributions was also investigated for this paper, but
was however outperformed by the mixed exponential distri-
bution, especially in fitting both ends of the distribution.

As opposed to other rainfall generators which use a fixed
timescale (e.g. Furrer and Katz, 2008), the time is sampled
discontinuously in this case.

The sampling of the events is an automated process with
random selection of events from the pool of historical rain-
fall events for each season. When sampling a specific event,
the intensity sequence and consequently also the duration is
maintained. Synthetic resampled time series are, therefore
produced by random alternating sampling of the inter-event
times and historical events from a specific season. It is pos-
sible to sample the same event more than once. The proce-
dure is repeated until the length of the generated series cor-
responds to the length of the historical series or any other
specified length shorter than the total length of the original
series. The number and the chronology of events are there-
fore different from season to season and from year to year.

A vital assumption here is that events from the historical
series can be sampled independently. Depending on the me-
teorological conditions at the time of a specific event there
might potentially be some correlation to prior and posterior
events due to short inter-event times. Extreme event statis-
tics and development of IDF relationships from partial dura-
tion series in Denmark is also produced assuming indepen-
dent events (Mikkelsen et al., 1998; Madsen et al., 2009),
so in order to preserve this methodology, no inter-correlation
between events has been implemented in the presented ap-
proach.

www.hydrol-earth-syst-sci.net/21/4433/2017/ Hydrol. Earth Syst. Sci., 21, 4433–4448, 2017
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3.2 Climate projection and stochastic resampling of
rainfall series

The climate-projected rainfall series is generated in three
steps:

1. The inter-event time for each season is sampled using
the same procedure as described in the previous sec-
tion; however, the parameters of the mixed exponential
distribution for each season are implemented as stochas-
tic variables and thus sampled randomly from a uniform
distribution with fixed upper and lower boundaries. This
allows for different distributions of inter-event times
than the ones used in the resampling of historical se-
ries. In the climate-projected series, it is thus possible to
accommodate for climate changes in seasonal precipita-
tion and the distribution between small and large events,
by changing the number of events per season. As an ex-
ample the method is able to accommodate a moderate
increase of total summer precipitation, and at the same
time a considerable increase in frequency and intensity
of extreme events, with generally a lower number of to-
tal events in summer as a result.

2. Rainfall events are sampled from the pool of historical
events for each season in the same way as described
in Sect. 3.1. The duration of each event is not alter-
nated under impact of climate change, since there is
presently no evidence that single events will become
shorter or longer in the future. This is obviously a cru-
cial assumption, but nonetheless the best current es-
timate, which also has been applied by, for example,
Olsson et al. (2009). The sampling of events is there-
fore done without alternating the events from the pool,
other than multiplying by different change factors as
presented below.

3. The climate projection of the generated time series is
inspired by the delta change method. However unlike
Olsson, the change factors are implemented as random
variables. The change factor for a given rainfall inten-
sity, i, is derived using the probability, F(i), of that the
intensity being less than or equal to i. For each season,
the rainfall intensities from the original historical rain
series are fitted to the same type of mixed exponential
distribution (Willems, 2000a) as applied for fitting the
inter-event times (Eq. 1):

F (i)= p
[
1− exp(λai)

]
+(1−p)

[
1− exp(λbi)

]
, (2)

where λa and λb are rate parameters for two populations
“a” and “b”, and p is the weight given to population “a”.
F(i) has a range from 0 to 1.

For each season change factors are multiplied by inten-
sities on the minute scale. The change factor as a func-
tion of intensity, c(i), is thus calculated for each season

by a linear function:

c (i)= αF (i)+β, (3)

where α and β are random variables sampled from uni-
form distributions with fixed limits.

For each projected rainfall series there is a different
value of α and β for each season. During the develop-
ment of the procedure, the limits of the uniform distri-
bution of α and β for each season were empirically se-
lected starting with broad intervals which were reduced
by discarding non-accepted runs (see below).

The total number of random variables for generating
climate-projected stochastic rain series in the current setup
with four yearly seasons is 20 (2× 4 for the change factor
plus 3× 4 for the mixed exponential distributions).

3.3 Evaluation and optimization procedure

The governing assumption behind the resampling procedure
is that the resampled rainfall series should have the equiv-
alent statistical characteristics as the historical series on a
number of key target variables. The climate-projected resam-
pled series should therefore also have the equivalent statisti-
cal characteristics by means of a number of key target cli-
mate projections (as the ones presented in Tables 1–2). It
is not a necessity that the same target variables are used to
evaluate resampled historical rainfall series and the climate-
projected series, but we chose to do so in this paper in or-
der to keep the evaluation procedures the same regardless of
generating series which should statistically represent histori-
cal series or climate-projected series. The key target variables
are described in detail below:

1. Annual precipitation (ap). This target variable is in-
cluded as it is a measure of the total “mass” balance.
Since the individual years of the resampled and histori-
cal series are not directly comparable year by year, the
mean of all years is applied as target variable.

2. Seasonal precipitation (sp). The mean seasonal precip-
itation is applied as a target variable in order to ensure
same distribution between seasons in the resampled se-
ries. The four target parameters are labelled spwi, spsp,
spsu, spau corresponding to winter, spring, summer, and
autumn precipitation respectively.

3. Number of events above 10 mm per day (n10mm). This
target variable provides a measure of the representation
of extreme events.

4. Number of events above 20 mm per day (n20mm); same
procedure as for no. 3.

5. Maximum daily precipitation (mdp, as a mean of the
maximum day for all years). This target variable also
certifies the representation of extreme events.
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6. IDF relationships. The IDF relationships are tradition-
ally applied in design of urban drainage systems and are
therefore relevant to include as a target variable. In ac-
cordance with Table 2, it is chosen to use the mean rain
intensity over a duration of 60 min for return periods of
2 and 10 years respectively as a target value. The two
values are labelled d60T2 and d60T10 respectively.

The performance of each individual target variable is esti-
mated using a simple ratio measure between the target value
and the corresponding modelled value:

Pi,j = 1−

∣∣Ti −Mi,j

∣∣
Ti

. (4)

Here Pi,j is the individual performance parameter for target
variable i (as presented above) corresponding to realization
j , Ti is the target value, and Mi,j is the modelled value of
the target variable of the j th realization. For the evaluation
of the resampled series against the historical series, Ti =Hi ,
where Hi is the value of the target variable of the historical
series. With respect to the evaluation of the climate-projected
rainfall series, where the target value is given by a climate
factor (cf) multiplied by the target variable of the historical
series,

Ti = cfi ·Hi . (5)

Thus the performance measure is

Pi,j = 1−

∣∣cfi ·Hi −Mi,j

∣∣
cfi ·Hi

. (6)

Here P can vary between 0 and 1, where P = 1 corresponds
to a perfect fit.

In order for a simulated rainfall series to be accepted Pi,j
has to be larger than a specified threshold. For the resam-
pled historical series the acceptance criterion for the individ-
ual performance measures is fixed and has been chosen as
Pcrit,i = 0.90, hence all 10 individual performance measures
should exceed this value in order for the realization to be
accepted (Table 4). This means that if a target value of just
one of the 10 target values deviates more than 10 % from the
value of the historical series, the realization is rejected.

For the climate-projected series, it is possible to estimate
individual values of the performance using the standard de-
viations of the climate factors (cf) given in Tables 1 and 2:

Pcrit,i = 1−
2 · σcf,i

cfi
. (7)

Assuming Gaussian distributed target variables, we will thus
accept values which are within the 95 % confidence intervals
of the distribution of each target variable. The acceptance cri-
teria of the performance measure will thus be different for
each target variable depending on the uncertainty (standard
deviation) related to that specific climate projection (see Ta-
bles 1 and 2). The acceptance criteria for the performance

of each target variable are presented in Table 6 along with
climate factors and standard deviation for each variable.

The combined performance measure Pj of each realiza-
tion series (j) is estimated as

Pj =

I∑
i=1

wiPi,j , (8)

where wi is the weights of the individual performance mea-
sures,

∑
wi = 1, and I is the total number of individual per-

formance parameters.
The individual weights are presented in Sect. 4.2 and Ta-

ble 6. One could argue that each season should be given the
same weight; however, because summer precipitation tends
to be more important in terms of extreme events in Denmark
this is given a higher weight. Moreover, because winter pre-
cipitation might be associated with larger measurement er-
rors due to poor measurement of solid precipitation, this is
given a smaller weight.

4 Results and evaluation

4.1 Historical rainfall series resampler

The synthetic resampled series are generated with the same
total length as the original historical series – in this case 32
years.

The inter-event times for each season are sampled from the
mixed exponential distribution as detailed in Sect. 3.1. The
estimated parameters are presented in Table 3. By comparing
the parameters, it is evident that there is a significant differ-
ence for each season. Therefore, it is important that the inter-
event times are sampled individually for each season to en-
sure a representative number of events in the resampled rain-
fall series compared to the historical rainfall series. Figure 3
exemplifies empirical cumulative distribution functions for
summer inter-events times for the historical series and for the
fitted mixed exponential distribution of summer inter-event
times. Furthermore, the empirical distribution from the re-
sampled series with the best combined performance measure
is presented (Pj = 0.98). Using the mixed exponential dis-
tribution, there is small underestimation of inter-event times
between 1 and 6 h and an equivalent overestimation between
6 and 24 h. This is, however, insignificant in comparison to
other fitted distribution functions and thus not considered a
problem in random sampling of inter-event times from these
distributions.

There is a stringent dependency between inter-event times
and number of events in the rainfall series. In order to gen-
erate a valid and representational resampled rain series, the
number of events series should correspond somewhat to the
number of events in the historical rainfall series. Table 4
therefore includes the mean and standard deviation of the
number of events per year even though the number of events
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Table 3. The fitted rate and weight parameters for the mixed exponential distribution specified for each season.

Parameter Winter Spring Summer Autumn

Rate, population a, λa,ie, (days) 0.38 0.33 0.24 0.26
Rate, population b, λb,ie, (days) 4.87 4.46 3.00 2.90
Weight population a,p (–) 0.69 0.56 0.55 0.64

10 -1 10 0 10 1

Inter-event time, t ie (days)

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y,

 F
(t

i e
)

Empirical CDF, hist., summer

Fitted mixed exponential CDF, hist., summer

Empirical CDF, hist. resamp. (best fit), summer

Figure 3. Example of cumulative distribution functions for summer
inter-event times.

is not used as a target variable for estimating the individual
performances.

The resampling of the observed rainfall series is performed
generating 5000 different resampled rainfall series and as-
sessing the performance of each generated series using the
method described in Sect. 3.3. Out of the 5000 realizations
of simulated series, 275 (5.5 %) are accepted using the crite-
rion of a minimum individual performance measure (Pcrit,i)

of 0.90. The fact that all 10 individual performance measures
have to be larger than the acceptance criteria has been shown
to be a tough condition to fulfil. Often one or two of the 10
has a slightly lower value and the realization is thus rejected.
On average the accepted realizations have a combined per-
formance measure (Pj ) of 0.95 (ranging between 0.92 and
0.98). Figure 4 presents a bar plot (blue shades) of each of
the target variables for the historical series, the one resam-
pled series with the highest combined performance measure,
as well as the mean of the accepted resampled series (with
uncertainty bounds indicating the minimum and maximum
of the accepted series).

Generally there is a good agreement between the histor-
ical series and the accepted series on the target parameters
with the highest weights, i.e. the seasonal precipitation. This
is actually the case for the majority of the 5000 realizations;
however, the performance measures becomes rather low if
the extreme events are not represented correctly in the resam-
pled series and they are in that case rejected. The variability
between the resampled series is only due to the randomness

assembling events and inter-event times from the historical
series because the mixed exponential parameters for each
season are fixed corresponding to the fits (Table 3). The re-
jection of resampled series is therefore often due to either
sampling of too few or too many “extreme” events within a
season.

In many situations, only the one resampled series with the
highest performance measure is of interest. Table 4, there-
fore, lists target values of the historical series and the resam-
pled series with the highest performance measure (best fit).
Besides the best combined performance measure of Pj =
0.98, the individual performance measures are given in the
right column. In order not only to compare series on mean
values, Table 4 also presents standard deviations describing
the year-to-year variability over the total length of the series.
Generally there is a satisfactory agreement (below 10 %) of
both mean and standard deviations between the historical se-
ries and the “best” accepted resampled rainfall series.

To verify the representativeness of extreme rainfall, Fig. 5
(left) presents IDF relationships (from 10 to 360 min dura-
tions) for the historical and “best” resampled series for re-
turn periods of 2 and 10 years respectively. Grey areas repre-
sent the variability in all the accepted realizations. Generally,
there is an acceptable agreement between the curves which
verifies the resampling method. There is, however, a minor
divergence for short durations of the 10-year return period.
In general, the longer the return period the larger the diver-
gence between the curves to be expected as a result of the
random sampling of historical events in the generated series.
Figure 6 shows the time series of the “best fit” resampled
time series.

The overall assessment of the previous evaluation indi-
cates that the rainfall resampler can represent the historical
rainfall series well based on the selected performance param-
eters. Due to the stochasticity of the sampling of inter-event
times and rainfall events, there is obviously some variabil-
ity from year to year and from series to series, but because
none of the target variables are significantly biased, the over-
all performance of the resampler is accepted. As it is possible
to produce resampled rainfall series with the same statistics
as the corresponding original historical series, the resampling
algorithm will be applied to generate climate-projected rain-
fall series in the following section.
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Table 4. Target variables (mean and standard deviation) and performance measures for the historical series and the one resampled series with
the highest performance measure.

Acceptance criteria Historical series “Best fit”
and weights (target) resampled series

Target variable Pcrit,i wi Mean SD Mean SD Pi

Annual no. of events 200.1 39.4 218.2 45.7
Annual precipitation ap (mm) 0.90 576.1 122.3 586.5 140.6 0.96
Seasonal precipitation, winter spwi (mm) 0.90 0.05 90.9 36.5 101.6 26.7 0.99
Seasonal precipitation, spring spsp (mm) 0.90 0.10 86.5 43.1 84.9 29.3 0.98
Seasonal precipitation, summer spsu (mm) 0.90 0.25 213.0 57.0 209.1 75.3 0.98
Seasonal precipitation, autumn spau (mm) 0.90 0.10 185.7 53.6 190.9 63.9 0.97
Annual number of events above 10 mm per day n10mm (#) 0.90 0.17 16.0 4.5 15.8 5.4 0.99
Annual number of events above 20 mm per day n20mm (#) 0.90 0.08 3.3 2.1 3.3 2.3 0.99
Annual maximum daily precipitation mdp (mm) 0.90 0.08 35.2 12.7 32.0 12.0 0.99
Rain intensity for 60 min, T = 2 years d60T2 (mm h−1) 0.90 0.08 15.7 16.4 0.95
Rain intensity for 60 min, T = 10 years d60T10 (mm h−1) 0.90 0.08 28.4 28.7 0.99
Combined performance measure P 0.98
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Figure 4. Target variables and their values for comparing historical series and resampled series (in blue shades) and climate-projected
historical series and climate-projected and resampled series (in red shades). For the climate-projected target (deep red) the uncertainty
bounds (black lines) represent 2 times the standard deviation of Tables 1 and 2. For the resampled series the uncertainty bounds represent the
total range of the accepted realizations.
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Figure 5. IDF curves for historical and resampled rainfall series (a) and climate-projected historical and resampled series (b).
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Figure 6. Time series example of resampled rainfall series. The temporal resolution of rainfall data is 1 min.

4.2 Climate-projected rainfall series

Figure 4 and Table 6 provides results for the climate-
projected rainfall series. The target variables (climate-
projected historical) are estimated using Eq. (5) and are thus
the mean values of the historical series of Table 4 multiplied
by the climate factors specified in Table 6. In addition Fig. 4
provides an uncertainty estimate on the target values obtained
from the standard deviations of Tables 1 and 2.

Because the climate projection of rainfall series involves
randomization of not only the event assembling but also ran-
domization of mixed exponential distribution parameters and
change factors as function of intensity for each season, the
generation of rainfall series requires a larger quantity of real-
izations compared to the resampling of series described in
the previous section. Therefore a total of 10 000 climate-
projected rainfall series are generated. The acceptance cri-

teria implemented are, however, slightly different compared
to the ones detailed in Sect. 4.1. In the evaluation of climate-
projected rainfall series an individual acceptance criterion for
each target variable is estimated using Eq. (7). For the 10
target variables the acceptance criteria range between 0.59
(n20mm) and 0.89 (spwi) as presented in Table 6. The total
number of accepted realizations is 721 (7.2 %). The reason
that a larger percentage is accepted here than in the previous
section is that the acceptance criterion is somewhat softer en-
countering the uncertainty of climate factors. On average the
accepted realizations have a combined performance measure
(Pj ) of 0.90 (ranging between 0.81 and 0.97).

Table 5 presents the range of mixed exponential distribu-
tion parameters as well as ranges of change factor parame-
ters for the accepted climate-projected realizations for each
season. Comparing with Table 3 (in which the parameter as-
sessment is based on fitting the historical data) it is clear that
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Table 5. Ranges of accepted parameter values for the mixed exponential distribution applied to sampling inter-event times and for the linear
function applied to sample change factors for each season.

Parameter Winter Spring Summer Autumn

min max min max min max min max

Rate, population a, λa,ie, (days) 0.32 0.44 0.27 0.39 0.20 0.28 0.23 0.29
Rate, population b, λb,ie, (days) 4.10 5.60 3.90 5.00 2.70 3.30 2.60 3.20
Weight population a, p (–) 0.63 0.74 0.50 0.61 0.51 0.60 0.60 0.68
Change factor slope, α (–) 0.000 0.050 0.000 0.050 0.000 0.025 0.000 0.049
Change factor intercept, β (–) 0.80 1.20 0.80 1.20 0.81 1.20 0.86 1.20

Table 6. Climate factors of target variables and minimum acceptance criteria of the individual performance parameters P i,j , empirical
combined performance measure weights (wi), climate-projected target variables, and the corresponding values (±standard deviation) of the
best-fit climate-projected series.

Acceptance Climate proj. “Best fit”
Climate criteria hist. series climate
factors and weights (target) proj. series

Target variable cf Pcrit,i wi Mean Mean SD Pi

Annual no. of events 206.8 39.4
Annual precipitation ap (mm) 1.08 (±0.06) 0.89 599.6 629.8 147.3 0.96
Seasonal precipitation, winter spwi (mm) 1.12 (±0.06) 0.89 0.05 101.8 105.8 28.7 0.93
Seasonal precipitation, spring spsp (mm) 1.13 (±0.08) 0.86 0.10 97.7 92.2 39.8 0.99
Seasonal precipitation, summer spsu (mm) 1.06 (±0.18) 0.66 0.25 225.8 242.1 89.3 0.99
Seasonal precipitation, autumn spau (mm) 1.05 (±0.07) 0.87 0.10 195.0 189.8 65.9 0.90
Annual number of events above 10 mm per day n10mm (#) 1.20 (±0.13) 0.78 0.17 19.2 18.9 5.5 0.98
Annual number of events above 20 mm per day n20mm (#) 1.41 (±0.30) 0.57 0.08 4.7 4.6 2.7 0.99
Annual maximum daily precipitation mdp (mm) 1.12 (±0.09) 0.84 0.08 39.4 38.3 14.3 0.92
Rain intensity for 60 min, T = 2 years d60T2 (mm h−1) 1.20 (±0.10) 0.83 0.08 18.8 19.0 0.99
Rain intensity for 60 min, T = 10 years d60T10 (mm h−1) 1.30 (±0.20) 0.69 0.08 36.9 32.8 0.96
Combined performance measure P 0.97

the parameter values obtained by random sampling have a
broader range, indicating that an accepted realization with a
high performance value can be obtained from a broad range
of parameter values. Scatter plotting the performance values
as a function of parameter values (not shown) shows flat tops
indicating that an equal performance can be obtained from
low and high values within the range (uniform distribution).
This means that there is a dependency between inter-event
time parameters and chance factor parameters.

As seen in Table 5, the change factor is allowed to be
both smaller and larger than 1. This allows for both decrease
and increase in precipitation amounts in each seasons. The
climate-projected precipitation can thus be obtained from an
insignificant change in seasonal precipitation, but a rather
large increase in extreme precipitation.

Generally there is an acceptable agreement of climate-
projected target variables (climate-projected historical) and
corresponding values for the climate-projected resampled
series (red shades in Fig. 4). There is, however, slightly
more deviation compared to the present-time simulations and
larger ranges of target variable values. This is as expected
since the climate projection includes more random parame-

ters and complexity as well as broader acceptance criteria.
For the accepted realization with the highest performance
measure, P = 0.97 (Fig. 4 and Table 6), there is a tendency
for the target variables related to the extreme values to be
marginally underestimated. This is inevitably a result of high
weights given to the target values related to seasonal pre-
cipitation, especially summer precipitation. By changing the
weights it would be possible to obtain more equal extreme
values, however potentially at the expense of a poorer fit of
the accumulated precipitation values.

In Fig. 5 (right) the IDF curves for the climate-projected
series are shown. There is a slight underestimation of ex-
tremes for the 10-year return period, but an overestimation
of the 2-year return periods on low durations. Since the to-
tal length of the series is 32 years, return periods larger
than 10 years are not presented well, since they the associ-
ated with large uncertainties (see e.g. Thorndahl, 2009). The
uncertainty bands (grey areas) however cover the climate-
projected intensities. Figure 7 shows the time series of the
“best fit” resampled time series.

The overall performance of the climate projection of re-
sampled rainfall series is considered to be acceptable within
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Figure 7. Time series example of climate-projected rainfall series. The temporal resolution of rainfall data is 1 min.

the range of uncertainties related to the climate projections.
The introduction of 20 random variables and the random as-
sembling of rain events obviously require many realizations
in order to produce accepted rainfall series which have a sat-
isfactory degree of agreement on all target parameters.

5 Discussion

The developed procedure obviously involves a large degree
of subjectivity in the choice of processes and parameters to
include. This section will discuss and argue for some of these
choices.

The target variables have been chosen to represent both an-
nual and seasonal precipitation as well as more extreme val-
ues. The choice of the 10 specific target variables is closely
connected to the fact that this is what is currently available
for Danish future climate conditions. However, when other,
maybe more detailed, target variables becomes available, it
would be possible to redo the generation of climate-projected
rainfall series with other target variables. It was initially de-
cided only to present values from the RCP4.5 climate sce-
nario; however, the implementation of the method could just
as well have been implemented with another RCP or SRES
scenario. Another possibility could be to implement other du-
rations and return periods than for 60 min durations for 2 and
10 years respectively in order to emphasize specific extremes
further.

It is of utmost importance that the chosen target variables
are representative of the future precipitation patterns and that
they are comprehensive in the way that they cover both an-
nual/seasonal variations and single events and the statistics
related to these. In this paper, we chose only to include yearly
mean values of target parameters (except for the target vari-
ables related to return periods), but it could also be relevant
to apply the year-to-year variability as a target in itself in or-
der to certify the correct representativeness of the resampled
series in comparison with the original historical series.

The weights applied in estimating the overall performance
of resampled series are chosen in order to emphasize the ac-
cumulated precipitation values but, on the other hand, not
neglect the extremes. Other weights could have been applied.
One could imagine that the weights were chosen according
to the purpose of use of the resampled and climate-projected
series. If, for example, the series were to be used as an input
to an urban drainage model simulating overflow from com-
bined sewer systems to a recipient, it would probably be most
important to have a good representation of the precipitation
(event) totals. On the other hand if the purpose was simulat-
ing surcharge or flooding of a drainage system, the represen-
tation of extremes would be more important.

In the present approach a linear function and the probabil-
ity of a given rainfall intensity for a given season is applied to
derive the change factor as a function of intensity. The choice
of parameters allows change factors to be both smaller and
larger than 1. This might entail that the lowest fraction of in-
tensities is allowed to be smaller in a future climate while the
highest fraction of intensities will increase. Other continuous
functions, rather than the applied linear function, might be an
objective of future studies.

The proposed method applies two major assumptions
which are relevant to discuss here. The first assumption is
that events are sampled independently for each season. With
inter-event times down to 1 h, this might constitute a problem
in hydrological applications where the response time of the
system in question is larger than 1 h. Hence, coupled events
might impact the hydrological system response. The second
assumption is that the duration of events does not change un-
der changed climate signals. It has presently not been possi-
ble to find evidence for this contention in the scientific liter-
ature on climate change. Both of the assumptions are subject
to further investigations.
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6 Conclusions

This paper presented a procedure to generate both statisti-
cally representative resampled rainfall series from original
historical rainfall series as well as climate-projected rainfall
series, which includes the advantages in local historical rain-
fall series as well as projections on changes in rain patterns
in the future climate.

The simulated rainfall series can represent the climate-
projected target variables and it is shown possible to produce
rainfall series which project not only accumulated seasonal
precipitation but also extremes in correspondence with the
climate projection of the RCP4.5 scenario. The procedure is
generic, so if other climate scenarios and potentially other
target variables for further precipitation patterns are avail-
able, the method will be able to adapt to these as well.

The procedure for generating resampled and climate-
projected rainfall series fulfils a need for having local rep-
resentative rainfall series which are valid both for the present
and future climate. The series can be applied directly as in-
puts to urban drainage models in order to analyse the loads on
a drainage system, e.g. combined sewer overflow, surcharge,
storage filling, and flooding in the present and future climate.
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