1,342 research outputs found
Thermoplastic deformation of silicon surfaces induced by ultrashort pulsed lasers in submelting conditions
A hybrid 2D theoretical model is presented to describe thermoplastic
deformation effects on silicon surfaces induced by single and multiple
ultrashort pulsed laser irradiation in submelting conditions. An approximation
of the Boltzmann transport equation is adopted to describe the laser
irradiation process. The evolution of the induced deformation field is
described initially by adopting the differential equations of dynamic
thermoelasticity while the onset of plastic yielding is described by the von
Mise's stress. Details of the resulting picometre sized crater, produced by
irradiation with a single pulse, are then discussed as a function of the
imposed conditions and thresholds for the onset of plasticity are computed.
Irradiation with multiple pulses leads to ripple formation of nanometre size
that originates from the interference of the incident and a surface scattered
wave. It is suggested that ultrafast laser induced surface modification in
semiconductors is feasible in submelting conditions, and it may act as a
precursor of the incubation effects observed at multiple pulse irradiation of
materials surfaces.Comment: To appear in the Journal of Applied Physic
RNA secondary structure design
We consider the inverse-folding problem for RNA secondary structures: for a
given (pseudo-knot-free) secondary structure find a sequence that has that
structure as its ground state. If such a sequence exists, the structure is
called designable. We implemented a branch-and-bound algorithm that is able to
do an exhaustive search within the sequence space, i.e., gives an exact answer
whether such a sequence exists. The bound required by the branch-and-bound
algorithm are calculated by a dynamic programming algorithm. We consider
different alphabet sizes and an ensemble of random structures, which we want to
design. We find that for two letters almost none of these structures are
designable. The designability improves for the three-letter case, but still a
significant fraction of structures is undesignable. This changes when we look
at the natural four-letter case with two pairs of complementary bases:
undesignable structures are the exception, although they still exist. Finally,
we also study the relation between designability and the algorithmic complexity
of the branch-and-bound algorithm. Within the ensemble of structures, a high
average degree of undesignability is correlated to a long time to prove that a
given structure is (un-)designable. In the four-letter case, where the
designability is high everywhere, the algorithmic complexity is highest in the
region of naturally occurring RNA.Comment: 11 pages, 10 figure
Reduction of Two-Dimensional Dilute Ising Spin Glasses
The recently proposed reduction method is applied to the Edwards-Anderson
model on bond-diluted square lattices. This allows, in combination with a
graph-theoretical matching algorithm, to calculate numerically exact ground
states of large systems. Low-temperature domain-wall excitations are studied to
determine the stiffness exponent y_2. A value of y_2=-0.281(3) is found,
consistent with previous results obtained on undiluted lattices. This
comparison demonstrates the validity of the reduction method for bond-diluted
spin systems and provides strong support for similar studies proclaiming
accurate results for stiffness exponents in dimensions d=3,...,7.Comment: 7 pages, RevTex4, 6 ps-figures included, for related information, see
http://www.physics.emory.edu/faculty/boettcher
Teleworking practice in small and medium-sized firms: Management style and worker autonomy
In an empirical study of teleworking practices amongst small and medium-sized enterprises (SMEs) in West London, organisational factors such as management attitudes, worker autonomy and employment flexibility were found to be more critical than technological provision in facilitating successful implementation. Consequently, we argue that telework in most SMEs appears as a marginal activity performed mainly by managers and specialist mobile workers
Correction Roadmap and roadblocks for the band gap tunability of metal halide perovskites
Correction for âRoadmap and roadblocks for the band gap tunability of metal halide perovskitesâ by E. L. Unger et al., J. Mater. Chem. A, 2017, 5, 11401â11409.</p
Evolution of the solar irradiance during the Holocene
Aims. We present a physically consistent reconstruction of the total solar
irradiance for the Holocene. Methods. We extend the SATIRE models to estimate
the evolution of the total (and partly spectral) solar irradiance over the
Holocene. The basic assumption is that the variations of the solar irradiance
are due to the evolution of the dark and bright magnetic features on the solar
surface. The evolution of the decadally averaged magnetic flux is computed from
decadal values of cosmogenic isotope concentrations recorded in natural
archives employing a series of physics-based models connecting the processes
from the modulation of the cosmic ray flux in the heliosphere to their record
in natural archives. We then compute the total solar irradiance (TSI) as a
linear combination of the jth and jth + 1 decadal values of the open magnetic
flux. Results. Reconstructions of the TSI over the Holocene, each valid for a
di_erent paleomagnetic time series, are presented. Our analysis suggests that
major sources of uncertainty in the TSI in this model are the heritage of the
uncertainty of the TSI since 1610 reconstructed from sunspot data and the
uncertainty of the evolution of the Earth's magnetic dipole moment. The
analysis of the distribution functions of the reconstructed irradiance for the
last 3000 years indicates that the estimates based on the virtual axial dipole
moment are significantly lower at earlier times than the reconstructions based
on the virtual dipole moment. Conclusions. We present the first physics-based
reconstruction of the total solar irradiance over the Holocene, which will be
of interest for studies of climate change over the last 11500 years. The
reconstruction indicates that the decadally averaged total solar irradiance
ranges over approximately 1.5 W/m2 from grand maxima to grand minima
Hardy's inequality for functions vanishing on a part of the boundary
We develop a geometric framework for Hardy's inequality on a bounded domain
when the functions do vanish only on a closed portion of the boundary.Comment: 26 pages, 2 figures, includes several improvements in Sections 6-8
allowing to relax the assumptions in the main results. Final version
published at http://link.springer.com/article/10.1007%2Fs11118-015-9463-
Measurements of the Ratios and
Using the CLEO~II detector we measure , and .
We find the vector to pseudoscalar ratio, , which is similar to the
ratio found in non strange decays.Comment: 11 page uuencoded postscript file, postscript file also available
through http://w4.lns.cornell.edu/public/CLN
Measurement of the Inclusive Semi-electronic Branching Fraction
Using the angular correlation between the emitted in a decay and the emitted in the subsequent decay, we have measured the branching fraction for the
inclusive semi-electronic decay of the meson to be: {\cal B}(D^0
\rightarrow X e^+ \nu) = [6.64 \pm 0.18 (stat.) \pm 0.29 (syst.)] \%. The
result is based on 1.7 fb of collisions recorded by the CLEO II
detector located at the Cornell Electron Storage Ring (CESR). Combining the
analysis presented in this paper with previous CLEO results we find,
\frac{{\cal B} (D^0 \rightarrow X e^+ \nu)}
{{\cal B} (D^0 \rightarrow K^- \pi^+)}
= 1.684 \pm 0.056 (stat.) \pm 0.093(syst.) and
\frac{{\cal B}(D\rightarrow K^-e^+\nu)}
{{\cal B}(D\rightarrow Xe^+\nu)}
= 0.581 \pm 0.023 (stat.) \pm 0.028(syst.).
The difference between the inclusive rate and the sum of the measured
exclusive branching fractions (measured at CLEO and other experiments) is of the inclusive rate.Comment: Latex file, 33pages, 4 figures Submitted to PR
- âŠ