29 research outputs found
Flexible and sustainable building components through kerf patterns
Populations in cities are increasing, the way we live is changing, and climate change is at the forefront of the architectural agenda. There is an urgent need to develop sustainable and flexible spaces for future urban housing. This paper examines the potential for using engineered timber, a renewable material that stores carbon, for the production of flexible housing. The paper focuses on kerfing, a cutting method that can turn flat rigid panels into foldable or curved elements. This project aims to develop light and flexible folded partitions that address the challenges of affordability and sustainability for our future cities
Recommended from our members
Prefabricated engineered timber schools in the united kingdom: Challenges and opportunities
Due to changing demographics, the UK faces a significant shortage of school places. The UK government aims to build large numbers of new schools to meet this demand. However, legally binding carbon emissions mitigation commitments might limit the ability of the government to adequately meet this demand on-time, on-budget, and within sustainability targets. This paper assesses the opportunity for prefabricated engineered timber construction methods to help meet the demand for new primary and secondary school buildings in the UK within these constraints. Building on a study of past government-led school building programmes and the state-of-the-art developments in engineered timber construction, this paper outlines the benefits that an engineered timber school building programme could have on a sustainability and procurement level. A strategy is then proposed for the wider adoption of engineered timber for the construction of school buildings in the UK, including detailed guidelines for designers and policymakers. The study concludes with recommendations for the adaptation of this strategy in different countries, depending on context-specific requirements, therefore promoting a generalised adoption of sustainable and efficient construction processes.</jats:p
Solar pond powered liquid desiccant evaporative cooling
Liquid desiccant cooling systems (LDCS) are energy efficient means of providing cooling, especially when powered by low-grade thermal sources. In this paper, the underlying principles of operation of desiccant cooling systems are examined, and the main components (dehumidifier, evaporative cooler and regenerator) of the LDCS are reviewed. The evaporative cooler can take the form of direct, indirect or semi-indirect. Relative to the direct type, the indirect type is generally less effective. Nonetheless, a certain variant of the indirect type - namely dew-point evaporative cooler - is found to be the most effective amongst all. The dehumidifier and the regenerator can be of the same type of equipment: packed tower and falling film are popular choices, especially when fitted with an internal heat exchanger. The energy requirement of the regenerator can be supplied from solar thermal collectors, of which a solar pond is an interesting option especially when a large scale or storage capability is desired
Recommended from our members
Fabrication-Aware Joint Clustering in Freeform Space-Frames
Peer reviewed: TrueThe geometrical variability in the joints of large-scale, doubly-curved space-frame structures can have a substantial impact on the time and cost of their construction. This paper proposes a novel framework to assess the construction complexity of space-frame structures as a factor of the geometrical variability and fabrication of their joints, to promote the informed design of the fabrication process. The k-means algorithm was used to cluster space-frame joints into fabrication batches, providing an overview of the variability distribution. A novel initialisation method was developed that allows the algorithm to adapt to project-specific inputs, substantially improving cluster compactness. Overlaying the clustering results with the properties of different fabrication processes provides an accurate estimation of the construction complexity of alternative fabrication options. The method was applied to a large-scale case study to demonstrate the benefits in practice. Alternative fabrication scenarios were assessed in the early stages of the design development, leading to the informed design of the fabrication process and hence to the efficient construction of large-scale, complex structures.This study was supported by the EPSRC Centre for Decarbonisation of the Built Environment
(dCarb) [Grant Ref: EP/L016869/1]
Recommended from our members
Rationalization of freeform space-frame structures: Reducing variability in the joints
In recent years, the application of space-frame structures on large-scale freeform designs has significantly increased due to their lightweight configuration and the freedom of design they offer. However, this has introduced a level of complexity into their construction, as doubly curved designs require non-uniform configurations. This article proposes a novel computational workflow that reduces the construction complexity of freeform space-frame structures, by minimizing variability in their joints. Space-frame joints are evaluated according to their geometry and clustered for production in compliance with the tolerance requirements of the selected fabrication process. This provides a direct insight into the level of customization required and the associated construction complexity. A subsequent geometry optimization of the space-frame鈥檚 depth minimizes the number of different joint groups required. The variables of the optimization are defined in relation to the structure鈥檚 curvature, providing a direct link between the structure鈥檚 geometry and the optimization process. Through the application of a control surface, the dimensionality of the design space is drastically reduced, rendering this method applicable to large-scale projects. A case study of an existing structure of complex geometry is presented, and this method achieves a significant reduction in the construction complexity in a robust and computationally efficient way.</jats:p
Recommended from our members
Emerging trends in the application of engineered timber in UK school buildings
The number of pupils in the UK school system has significantly increased in recent years, creating an urgent need for the construction of efficient and sustainable school structures. Here, we explore the potential of using engineered timber for the delivery of healthier and more sustainable school buildings. An in-depth analysis of case-studies is carried out, highlighting the superior performance of engineered timber, when compared to traditional construction materials, in terms of the construction process and associated carbon emissions. Emerging design approaches are identified, and we analyse the quality of the generated spaces. This study forms the basis for the development of a novel approach to the application of engineered timber in school buildings, allowing architectural design flexibility and exploring advanced fabrication and construction techniques
Recommended from our members
Reducing the number of different nodes in space frame structures through clustering and optimization
Environmental Audit Committee Call for Evidence:"Sustainability of the Built Environment".
The Centre for Natural Material Innovation in the Department of Architecture at the University of Cambridge is a cross-disciplinary centre, bringing together people and research in plant sciences, biochemistry, chemistry, fluid dynamics, engineering, and architecture. Through innovative research and experimentation, we aim to transform the way we build to achieve zero carbon emissions. Our work enables the substitution of artificial materials such as concrete and steel with nature-based materials such as timber and bamboo, and replacement of structural carbon fibre and glass fibre with hemp and flax-based biocomposites. We collaborate with other leading research institutions globally, including in the USA, China, Australia, Uruguay and others