29 research outputs found

    Flexible and sustainable building components through kerf patterns

    Get PDF
    Populations in cities are increasing, the way we live is changing, and climate change is at the forefront of the architectural agenda. There is an urgent need to develop sustainable and flexible spaces for future urban housing. This paper examines the potential for using engineered timber, a renewable material that stores carbon, for the production of flexible housing. The paper focuses on kerfing, a cutting method that can turn flat rigid panels into foldable or curved elements. This project aims to develop light and flexible folded partitions that address the challenges of affordability and sustainability for our future cities

    Solar pond powered liquid desiccant evaporative cooling

    Get PDF
    Liquid desiccant cooling systems (LDCS) are energy efficient means of providing cooling, especially when powered by low-grade thermal sources. In this paper, the underlying principles of operation of desiccant cooling systems are examined, and the main components (dehumidifier, evaporative cooler and regenerator) of the LDCS are reviewed. The evaporative cooler can take the form of direct, indirect or semi-indirect. Relative to the direct type, the indirect type is generally less effective. Nonetheless, a certain variant of the indirect type - namely dew-point evaporative cooler - is found to be the most effective amongst all. The dehumidifier and the regenerator can be of the same type of equipment: packed tower and falling film are popular choices, especially when fitted with an internal heat exchanger. The energy requirement of the regenerator can be supplied from solar thermal collectors, of which a solar pond is an interesting option especially when a large scale or storage capability is desired

    Environmental Audit Committee Call for Evidence:"Sustainability of the Built Environment".

    No full text
    The Centre for Natural Material Innovation in the Department of Architecture at the University of Cambridge is a cross-disciplinary centre, bringing together people and research in plant sciences, biochemistry, chemistry, fluid dynamics, engineering, and architecture. Through innovative research and experimentation, we aim to transform the way we build to achieve zero carbon emissions. Our work enables the substitution of artificial materials such as concrete and steel with nature-based materials such as timber and bamboo, and replacement of structural carbon fibre and glass fibre with hemp and flax-based biocomposites. We collaborate with other leading research institutions globally, including in the USA, China, Australia, Uruguay and others
    corecore