411 research outputs found

    Interpolating for the location of remote sensor data

    Get PDF
    An interpolation algorithm is presented as a practical alternative to common interpolation and approximation methods when applied to the problem of determining the location of remote sensor data. This algorithm is based upon knowledge of the geometry of the problem and is shown to be inherently more accurate than common interpolation schemes which may be applied to all types of data. A practical location problem is used to demonstrate its accuracy and computational cost

    Morphology Development in Model Polyethylene via Two-Dimensional Correlation Analysis

    Get PDF
    Two-dimensional (2D) correlation analysis is applied to synchrotron X-ray scattering data to characterize morphological regimes during nonisothermal crystallization of a model ethylene copolymer (hydrogenated polybutadiene, HPBD). The 2D correlation patterns highlight relationships among multiple characteristics of structure evolution, particularly the extent to which separate features change simultaneously versus sequentially. By visualizing these relationships during cooling, evidence is obtained for two separate physical processes occurring in what is known as “irreversible crystallization” in random ethylene copolymers. Initial growth of primarily lamellae into unconstrained melt (“primary-irreversible crystallization”) is distinguished from subsequent secondary lamellae formation in the constrained, noncrystalline regions between the primary lamellae (“secondary-irreversible crystallization”). At successively lower temperatures (“reversible crystallization”), growth of the crystalline reflections is found to occur simultaneously with the change in shape of the amorphous halo, which is inconsistent with the formation of an additional phase. Rather, the synchronous character supports the view that growth of frustrated crystals distorts the adjacent noncrystalline material. Furthermore, heterocorrelation analysis of small-angle and wideangle X-ray scattering data from the reversible crystallization regime reveals that the size of new crystals is consistent with fringedmicellar structures (~9 nm). Thus, 2D correlation analysis provides new insights into morphology development in polymeric systems

    Cyclic Ruthenium-Alkylidene Catalysts for Ring-Expansion Metathesis Polymerization

    Get PDF
    A series of cyclic Ru-alkylidene catalysts have been prepared and evaluated for their efficiency in ring-expansion metathesis polymerization (REMP). The catalyst structures feature chelating tethers extending from one N-atom of an N-heterocyclic carbene (NHC) ligand to the Ru metal center. The catalyst design is modular in nature, which provided access to Ru complexes having varying tether lengths, as well as electronically different NHC ligands. Structural impacts of the tether length were unveiled through 1H NMR spectroscopy as well as single-crystal X-ray analyses. Catalyst activities were evaluated via polymerization of cyclooctene, and key data are provided regarding propagation rates, intramolecular chain transfer, and catalyst stabilities, three areas necessary for the efficient synthesis of cyclic poly(olefin)s via REMP. From these studies, it was determined that while increasing the tether length of the catalyst leads to enhanced rates of polymerization, shorter tethers were found to facilitate intramolecular chain transfer and release of catalyst from the polymer. Electronic modification of the NHC via backbone saturation was found to enhance polymerization rates to a greater extent than did homologation of the tether. Overall, cyclic Ru complexes bearing 5- or 6-carbon tethers and saturated NHC ligands were found to be readily synthesized, bench-stable, and highly active catalysts for REMP

    Ring-Expansion Metathesis Polymerization: Catalyst-Dependent Polymerization Profiles

    Get PDF
    Ring-expansion metathesis polymerization (REMP) mediated by recently developed cyclic Ru catalysts has been studied in detail with a focus on the polymer products obtained under varied reaction conditions and catalyst architectures. Depending upon the nature of the catalyst structure, two distinct molecular weight evolutions were observed. Polymerization conducted with catalysts bearing six-carbon tethers displayed rapid polymer molecular weight growth which reached a maximum value at ca. 70% monomer conversion, resembling a chain-growth polymerization mechanism. In contrast, five-carbon-tethered catalysts led to molecular weight growth that resembled a step-growth mechanism with a steep increase occurring only after 95% monomer conversion. The underlying reason for these mechanistic differences appeared to be ready release of five-carbon-tethered catalysts from growing polymer rings, which competed significantly with propagation. Owing to reversible chain transfer and the lack of end groups in REMP, the final molecular weights of cyclic polymers was controlled by thermodynamic equilibria. Large ring sizes in the range of 60−120 kDa were observed at equilibrium for polycyclooctene and polycyclododecatriene, which were found to be independent of catalyst structure and initial monomer/catalyst ratio. While six-carbon-tethered catalysts were slowly incorporated into the formed cyclic polymer, the incorporation of five-carbon-tethered catalysts was minimal, as revealed by ICP-MS. Further polymer analysis was conducted using melt-state magic-angle spinning ^(13)C NMR spectroscopy of both linear and cyclic polymers, which revealed little or no chain ends for the latter topology

    Real-time depth sectioning: Isolating the effect of stress on structure development in pressure-driven flow

    Get PDF
    Transient structure development at a specific distance from the channel wall in a pressure-driven flow is obtained from a set of real-time measurements that integrate contributions throughout the thickness of a rectangular channel. This “depth sectioning method” retains the advantages of pressure-driven flow while revealing flow-induced structures as a function of stress. The method is illustrated by applying it to isothermal shear-induced crystallization of an isotactic polypropylene using both synchrotron x-ray scattering and optical retardance. Real-time, depth-resolved information about the development of oriented precursors reveals features that cannot be extracted from ex-situ observation of the final morphology and that are obscured in the depth-averaged in-situ measurements. For example, at 137 °C and at the highest shear stress examined (65 kPa), oriented thread-like nuclei formed rapidly, saturated within the first 7 s of flow, developed significant crystalline overgrowth during flow and did not relax after cessation of shear. At lower stresses, threads formed later and increased at a slower rate. The depth sectioning method can be applied to the flow-induced structure development in diverse complex fluids, including block copolymers, colloidal systems, and liquid-crystalline polymers

    Direct Route to Colloidal UHMWPE by Including LLDPE in Solution during Homogeneous Polymerization of Ethylene

    Get PDF
    The usual aggregation and precipitation driven by crystallization of nascent PE during homogeneous polymerization of ultra-high molecular weight polyethylene (UHMWPE) is inhibited by including linear low-density polyethylene (LLDPE) in the catalyst solution prior to addition of ethylene monomer. Co-crystallization of newly formed PE and dissolved LLDPE creates a polymer brush on the fold surfaces of the nascent crystallites. Consequently, aggregation is inhibited by steric stabilization. Scanning electron microscopy (SEM) images show that individual lamellae (approximately 10–20 nm thick) typically have lateral dimensions of 0.5 μm × 3.5 μm and form “bowtie” shaped stacks that are approximately 200–500 nm thick. This simple method for stabilizing nascent crystals against precipitation is enabling fundamental studies of their metastable “disentangled” state and may open scalable routes to compounding UHMWPE

    Elective Total Knee Replacement in a Patient With a Left Ventricular Assist Device-Navigating the Challenges With Spinal Anesthesia.

    Get PDF
    Elective joint surgery in a patient with a left ventricular assist device (LVAD) may become increasingly common as these devices become entrenched in the management of patients with heart failure. Furthermore, regional techniques may be reasonable anesthetic options in this challenging population. This case conference discusses a spinal anesthetic for an elderly female with an LVAD who presented for an elective left total knee arthroplasty. The expert case commentaries that follow the case discussion further explore the anesthetic issues in light of the existing literature

    Properties of small molecular drug loading and diffusion in a fluorinated PEG hydrogel studied by ^1H molecular diffusion NMR and ^(19)F spin diffusion NMR

    Get PDF
    R_f-PEG (fluoroalkyl double-ended poly(ethylene glycol)) hydrogel is potentially useful as a drug delivery depot due to its advanced properties of sol–gel two-phase coexistence and low surface erosion. In this study, ^1H molecular diffusion nuclear magnetic resonance (NMR) and ^(19)F spin diffusion NMR were used to probe the drug loading and diffusion properties of the R_f-PEG hydrogel for small anticancer drugs, 5-fluorouracil (FU) and its hydrophobic analog, 1,3-dimethyl-5-fluorouracil (DMFU). It was found that FU has a larger apparent diffusion coefficient than that of DMFU, and the diffusion of the latter was more hindered. The result of ^(19)F spin diffusion NMR for the corresponding freeze-dried samples indicates that a larger portion of DMFU resided in the R_f core/IPDU intermediate-layer region (where IPDU refers to isophorone diurethane, as a linker to interconnect the R_f group and the PEG chain) than that of FU while the opposite is true in the PEG–water phase. To understand the experimental data, a diffusion model was proposed to include: (1) hindered diffusion of the drug molecules in the R_f core/IPDU-intermediate-layer region; (2) relatively free diffusion of the drug molecules in the PEG-water phase (or region); and (3) diffusive exchange of the probe molecules between the above two regions. This study also shows that molecular diffusion NMR combined with spin diffusion NMR is useful in studying the drug loading and diffusion properties in hydrogels for the purpose of drug delivery applications

    The grinch who stole wisdom

    Get PDF
    Dr. Seuss is wise. How the Grinch Stole Christmas (Seuss, 1957) could serve as a parable for our time. It can also be seen as a roadmap for the development of contemplative wisdom. The abiding popularity of How the Grinch Stole Christmas additionally suggests that contemplative wisdom is more readily available to ordinary people, even children, than is normally thought. This matters because from the point of view of contemplatives in any of the world's philosophies or religions, people are confused about wisdom. The content of the nascent field of wisdom studies, they might say, is largely not wisdom at all but rather what it's like to live in a particular kind of prison cell, a well appointed cell perhaps, but not a place that makes possible either personal satisfaction or deep problem solving. I believe that what the contemplative traditions have to say is important; they offer a different orientation to what personal wisdom is, how to develop it, and how to use it in the world than is presently contained in either our popular culture or our sciences. In order to illustrate this I will examine, in some detail, one contemplative path within Buddhism. Buddhism is particularly useful in this respect because its practices are nontheistic and thus avoid many of the cultural landmines associated with the contemplative aspects of Western religions
    corecore