465 research outputs found

    Development of a new sticky material for medical adhesive plaster

    Get PDF

    A novel long non-coding natural antisense RNA is a negative regulator of Nos1 gene expression

    Get PDF
    Long non-coding natural antisense transcripts (NATs) are widespread in eukaryotic species. Although recent studies indicate that long NATs are engaged in the regulation of gene expression, the precise functional roles of the vast majority of them are unknown. Here we report that a long NAT (Mm-antiNos1 RNA) complementary to mRNA encoding the neuronal isoform of nitric oxide synthase (Nos1) is expressed in the mouse brain and is transcribed from the non-template strand of the Nos1 locus. Nos1 produces nitric oxide (NO), a major signaling molecule in the CNS implicated in many important functions including neuronal differentiation and memory formation. We show that the newly discovered NAT negatively regulates Nos1 gene expression. Moreover, our quantitative studies of the temporal expression profiles of Mm-antiNos1 RNA in the mouse brain during embryonic development and postnatal life indicate that it may be involved in the regulation of NO-dependent neurogenesis

    The temporal expression profile of a Nos3-related natural antisense RNA in the brain suggests a possible role in neurogenesis

    Get PDF
    Experimental work over the past several years has revealed an unexpected abundance of long natural antisense transcripts (NATs) in eukaryotic species. In light of the proposed role of such RNA molecules in the regulation of gene expression in the brain, attention is now focused on specific examples of neuronal NATs. Of particular interest are NATs that are complementary to mRNAs encoding nitric oxide synthase (NOS), the enzyme responsible for production of the important gaseous neurotransmitter nitric oxide (NO). Here we study the temporal expression profile of murine Nos3as NAT in the brain. Notably, Nos3as NAT is known to act as a negative regulator of Nos3 gene expression. The results of our quantitative analysis reveal differential expression of Nos3as NAT during embryonic and post-embryonic stages of development of the brain. Also, they show that the low levels of Nos3as NAT coincides with active neurogenesis. In addition we report on an inverse correlation between the relative expression level of Nos3as NAT and the level of Nos3 protein. Thus our data raise the hypothesis that the Nos3as NAT regulates neurogenesis through suppression of Nos3 gene activity. This idea is further supported by experiments conducted on the olfactory bulbs and cultured neuroblastoma cells

    ΠžΠ‘Π ΠΠ‘ΠžΠ’ΠšΠ Π­Π›Π›Π˜ΠŸΠ’Π˜Π§Π•Π‘ΠšΠ˜ ΠŸΠžΠ›Π―Π Π˜Π—ΠžΠ’ΠΠΠΠžΠ“Πž Π‘Π˜Π“ΠΠΠ›Π Π’ Π ΠΠ”Π˜ΠžΠ›ΠžΠšΠΠ¦Π˜ΠžΠΠΠ«Π₯ БВАНЦИЯΠ₯ Π‘ Π¦Π˜Π€Π ΠžΠ’Π«Πœ Π‘Π˜ΠΠ’Π•Π—Π˜Π ΠžΠ’ΠΠΠ˜Π•Πœ ΠΠŸΠ•Π Π’Π£Π Π« АНВЕННЫ

    Get PDF
    The processing of the elliptically polarized reflected signal in the Earth remote sensing systems makes it possible to obtain additional advantages when solving problems of recognition of the observable objects on the ground and under the ground. Full polarization reception implemented in radar stations with digital synthesis of the antenna aperture when remote sensing of the Earth increases the information content of such radars (the radar image of the investigated surface is detailed, the contrast of objects in the field of view is improved, and various negative effects of the image are minimized). The paper considers the quadrature processing of the reflected elliptically polarized signal in radar stations with digital synthesis of the antenna aperture in the mode of lateral survey of the terrestrial (water) surface. The processing of the reflected signal using the methods of radio polarimetry opens new possibilities for such radars while solving problems of remote sensing of the surface and recognition of radar targets. In addition, radar stations with digital synthesis of the antenna aperture with processing of an elliptically polarized signal have a higher interference immunity compared to radars, where a linearly polarized signal is processed. In the article, mathematical modeling is performed in the part of demodulation of the in-phase and quadrature components of the trajectory signal when the geometric parameters of the polarization ellipse change. The obtained analytical expressions allow estimating the influence of the geometric parameters of the polarization ellipse on the trajectory signal being processed. It is analytically confirmed that the angle of ellipticity affects the energy characteristics, and the orientation angle of the polarization ellipse introduces an additional phase shift in the characteristics of the trajectory signal being processed. Not taking into account these nuances while designing digital units and systems of such radars can lead to the loss of all the benefits of processing an elliptically polarized signal. The paper presents a structural scheme of the polarization radar station with digital synthesis of the antenna aperture.ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° эллиптичСски поляризованного ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ сигнала Π² систСмах дистанционного зондирования Π—Π΅ΠΌΠ»ΠΈ позволяСт ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ прСимущСства ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ распознавания Π½Π°Π±Π»ΡŽΠ΄Π°Π΅ΠΌΡ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² Π½Π° Π·Π΅ΠΌΠ»Π΅ ΠΈ ΠΏΠΎΠ΄ Π·Π΅ΠΌΠ»Π΅ΠΉ. ΠŸΠΎΠ»Π½Ρ‹ΠΉ поляризационный ΠΏΡ€ΠΈΠ΅ΠΌ, Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π² Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… станциях с Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹ΠΌ синтСзированиСм Π°ΠΏΠ΅Ρ€Ρ‚ΡƒΡ€Ρ‹ Π°Π½Ρ‚Π΅Π½Π½Ρ‹, ΠΏΡ€ΠΈ дистанционном Π·ΠΎΠ½Π΄ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π—Π΅ΠΌΠ»ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΈΡ… Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠ² (дСтализируСтся Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ исслСдуСмой повСрхности, подчСркиваСтся ΠΊΠΎΠ½Ρ‚Ρ€Π°ΡΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², находящихся Π² Π·ΠΎΠ½Π΅ ΠΎΠ±Π·ΠΎΡ€Π°, ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ эффСкты изобраТСния). Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассматриваСтся квадратурная ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ эллиптичСски поляризованного сигнала Π² Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… станциях с Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹ΠΌ синтСзированиСм Π°ΠΏΠ΅Ρ€Ρ‚ΡƒΡ€Ρ‹ Π°Π½Ρ‚Π΅Π½Π½Ρ‹ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠ±Π·ΠΎΡ€Π° Π·Π΅ΠΌΠ½ΠΎΠΉ (Π²ΠΎΠ΄Π½ΠΎΠΉ) повСрхности. ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ сигнала с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² радиополяримСтрии ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Π΅Ρ‚ Π½ΠΎΠ²Ρ‹Π΅ возмоТности ΠΏΠ΅Ρ€Π΅Π΄ Ρ‚Π°ΠΊΠΈΠΌΠΈ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ‚ΠΎΡ€Π°ΠΌΠΈ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ дистанционного зондирования повСрхности ΠΈ распознавания Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Ρ†Π΅Π»Π΅ΠΉ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ станции с Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹ΠΌ синтСзированиСм Π°ΠΏΠ΅Ρ€Ρ‚ΡƒΡ€Ρ‹ Π°Π½Ρ‚Π΅Π½Π½Ρ‹ с ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ эллиптичСски поляризованного сигнала ΠΈΠΌΠ΅ΡŽΡ‚ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΠΏΠΎΠΌΠ΅Ρ…ΠΎΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ‚ΠΎΡ€Π°ΠΌΠΈ, Π³Π΄Π΅ обрабатываСтся линСйнополяризованный сигнал. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ производится матСматичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π² части дСмодуляции синфазной ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠΉ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ сигнала ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ гСомСтричСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² эллипса поляризации. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ аналитичСскиС выраТСния ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ влияниС гСомСтричСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² эллипса поляризации Π½Π° ΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΉ сигнал. АналитичСски подтвСрТдаСтся, Ρ‡Ρ‚ΠΎ ΡƒΠ³ΠΎΠ» эллиптичности ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ влияниС Π½Π° энСргСтичСскиС характСристики, Π° ΡƒΠ³ΠΎΠ» ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ эллипса поляризации вносит Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ„Π°Π·ΠΎΠ²Ρ‹ΠΉ сдвиг Π² характСристики ΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΠΎΠ³ΠΎ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ сигнала. НСучСт этих нюансов ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Ρ… Π±Π»ΠΎΠΊΠΎΠ² ΠΈ систСм Ρ‚Π°ΠΊΠΈΡ… Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ‚ привСсти ΠΊ ΠΏΠΎΡ‚Π΅Ρ€Π΅ всСх прСимущСств ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ эллиптичСски поляризованного сигнала. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ приводится структурная схСма поляризационной Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ станции с Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹ΠΌ синтСзированиСм Π°ΠΏΠ΅Ρ€Ρ‚ΡƒΡ€Ρ‹ Π°Π½Ρ‚Π΅Π½Π½Ρ‹

    Electron-phonon scattering at the intersection of two Landau levels

    Get PDF
    We predict a double-resonant feature in the magnetic field dependence of the phonon-mediated longitudinal conductivity Οƒxx\sigma_{xx} of a two-subband quasi-two-dimensional electron system in a quantizing magnetic field. The two sharp peaks in Οƒxx\sigma_{xx} appear when the energy separation between two Landau levels belonging to different size-quantization subbands is favorable for acoustic-phonon transitions. One-phonon and two-phonon mechanisms of electron conductivity are calculated and mutually compared. The phonon-mediated interaction between the intersecting Landau levels is considered and no avoided crossing is found at thermal equilibrium.Comment: 13 pages, 8 figure
    • …
    corecore