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We predict a double-resonant feature in the magnetic field dependence of the phonon-mediated longitudinal
conductivity �xx of a two-subband quasi-two-dimensional electron system in a quantizing magnetic field. The
two sharp peaks in �xx appear when the energy separation between two Landau levels belonging to different
size-quantization subbands is favorable for acoustic-phonon transitions. One-phonon and two-phonon mecha-
nisms of electron conductivity are calculated and compared. The phonon-mediated interaction between the
intersecting Landau levels is considered and no avoided crossing is found at thermal equilibrium.
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I. INTRODUCTION

The acoustic phonon scattering of electrons in two-
dimensional �2D� systems in quantizing magnetic fields has
been studied extensively over the last three decades. The
peculiar density of states of the 2D electrons in a transverse
magnetic field B results in suppression of the electron-
phonon stattering rate at strong magnetic fields,1,2 at which
the so-called inelasticity parameter �=s /��c is less than
unity, where s is the sound velocity, �=�� /eB is the mag-
netic length, and �c=eB /m is the cyclotron frequency. A
detailed analysis of the acoustic phonon emission and ab-
sorption spectra in 2D electron systems has been carried out
in connection with phonon absorption spectroscopy,3–6 which
is used to investigate electronic states in both integer and
fractional quantum Hall effects. It was also noticed that at a
certain stage of supression of the one-phonon inter-Landau-
level transitions, the two-phonon transitions dominate the
electron relaxation rate.8 However, in a two-subband system
the electron relaxation rate can still be due to the one-phonon
transitions occurring between Landau levels of different size-
quantization subbands. An oscillatory behavior of the elec-
tron lifetime was found in a two-subband system.9

In this paper we focus on an intersection of two Landau
levels belonging to different size-quantization subbands of a
two-dimensional electron gas in a transverse magnetic field
B �see Fig. 1�. The electron density is chosen so that there
are enough electrons to fill only one Landau level out of the
two at the intersection point. Despite the general suppression
due to small �, we find that at an energy separation between
the two Landau levels of the order of the characteristic
acoustic-phonon energy T�=�s /�, the electron-phonon scat-
tering is strongly enhanced. In what follows we neglect the
effects related to the Coulomb interaction between the elec-
trons. These effects significantly change the results at low
temperatures.10,11 The virtue of the considered structure,
from the point of view of electron-phonon scattering, is that
an enhancement of the dissipative conductivity �xx arises
against the background of its strong overall suppression. This
enhancement can be understood from the following physical
consideration.

At the intersection of two Landau levels, say level �=0 of
the upper subband and level �=1 of the lower subband, the
matrix element of the electron-phonon interaction requires a
phonon momentum q�1/� for the most efficient transition.
Note that two Landau levels can cross at a magnitude of B
corresponding to ��a, where a is the characteristic width of
the quantum well confining the two-dimensional electron
gas. This results in qz�q��1/�, where qz and q� are the
perpendicular and in-plane components of the phonon mo-
mentum, respectively. On the other hand, the energy conser-
vation law requires that the phonon energy ��q matches the
energy separation between the two Landau levels, �= �E�=0
−E�=1�. For acoustic phonons we have �q=sq, and if com-
bined with the momentum requirement, two resonances are
obtained, one on each side of the crossing point, correspond-
ing to ���s /��T�. At each resonance the electron-phonon
scattering is significantly enhanced, owing to the one-phonon
transitions.

It is worth noting that a simultaneous intersection of two
Landau levels with the Fermi level leads to a missing quan-
tum Hall effect plateau, as expected from a single-subband
consideration. Such intersections occur repeatedly with de-
creasing B if the electron density per spin orientation n2D
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FIG. 1. �Color online� A crossing of two Landau levels belong-
ing to different subbands of size quantization. Phonon transitions
are most favorable for phonons with q�1/�.
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=nc�1+ �2p−1� /q	, where p and q are positive integers, and
nc=mE12/2��2, with E12 being the energy separation be-
tween the two size-quantization subbands. However, if the
Coulomb interaction between the electrons is taken into ac-
count, a new energy gap emerges at the intersection point.10

An enhancement of the electron scattering in a two-
subband system occurs also at zero magnetic field, when the
second size-quantization subband starts being filled with
electrons. This effect can be viewed in terms of a Lifshitz
topological transition of the Fermi surface, which is well-
known for the 3D case.12 The 2D case of this transition was
considered in Ref. 13, where the electron scattering occured
on a random potential of impurities. At B�0 one can hardly
speak of a Fermi surface. However, we refer the peculiar
behavior of �xx in our case to the same origin—a strong
variation in the density of states at the Fermi level. The case
considered in this paper has the advantage of more pro-
nounced anomalies.

An experimental realization of the above-described situa-
tion can be acheived in GaAs/AlGaAs heterojunctions. Usu-
ally, the donor supply of the electrons into the 2D layer is not
sufficient to achieve filling of the second size-quantization
subband. However, a significant increase in the concentration
can be achieved by illuminating the sample with photons of
energy close to the band gap of GaAs. The photoexcited
electrons come either from the DX centers in the AlGaAs
layer14 or from the valence band of the bulk GaAs producing
a charge separation at the interface.15 Furthermore, the 2D
electron concentration can be tuned within a large range us-
ing the method of continuous photoexcitation.16 Population
of the second subband of size quantization in a magnetic
field has been observed in a number of experiments related
to magneto-optical studies of the integer and fractional quan-
tum Hall effects.17–19

In this paper we consider only scattering of electrons by
phonons, although in a real 2D system the main contribution
to �xx at low temperatures comes from the scattering of elec-
trons by the impurity potential. This has been studied exten-
sively in connection with the integer quantum Hall effect.
However, since the electron-phonon coupling constant �
�B, the phonon-induced �xx at high enough magnetic fields
may be comparable with the impurity-induced �xx.

II. GENERAL RELATIONS

We consider an electron gas in a quantum well, formed by
a confining potential V�z�, in a strong magnetic field B di-
rected along the z axis. In the Landau gauge the vector po-
tential A= �0,xB ,0�, and the electron can be characterized by
the center of orbit coordinate X. The energy spectrum of the
electron, En�=En+��c��+1/2�, consists of the size quanti-
zation energy En and the magnetic quantization energy, de-
scribed by the Landau level number �. The acoustic phonons,
with dispersion �qj, interact with the electrons via both de-
formation potential �DP� and piezoelectric �PE� mechanisms.
We shall restrict ourselves to the isotropic Debye approxima-
tion, in which the phonon modes fall into a branch of longi-
tudinal �LA� phonons �j=1� and two branches of transverse
�TA� phonons �j=2,3�. This seems to be a good approxima-

tion for phonons at thermal equilibrium, in contrast with the
case of ballistic phonon propagation, where the anisotropy
gives rise to self-focusing effects.21 For GaAs, it follows that
the DP mechanism couples electrons only with LA phonons.
We assume that acoustic phonons are the only sourse of scat-
tering for the electrons in the well, neglecting the effects of
interface roughness and random potential of impurities, as
well as the presence of optical phonon modes. This assump-
tion is valid for fairly pure samples at temperatures below
the optical phonon energy. We also suppose the acoustical
phonons to be three-dimensional, neglecting the effects of
interface phonons. The electrons are considered spinless. The
spin degeneracy can be easily accounted for at the final stage
of calculation. Electron scattering by phonons is spin-
preserving, and the results for the conductivity will differ
only by a factor of 2.

The system of interacting electron and phonon gases is
described by the following second quantized Hamiltonian:

H = H0 + Hint, �1�

with

H0 = 

n�X

En�Cn�X
† Cn�X + 


qj

��qj�bqj
† bqj + 1/2� , �2�

and

Hint = − 

n�n���
qjX

MX
qj�n���

n�
��b−qj

† + bqj�Cn���X−�2qy

† Cn�X.

�3�

Here Cn�X
† , Cn�X, and bqj

† , bqj stand for the creation and an-
nihilation operators of the electron and phonon, respectively.
The matrix element of electron-phonon interaction is given
by

MX
qj�n���

n�
� = �e	qj − iq
qj�� �

2�qj�cV3d

�Fnn��qz������q��eiqx�X−�2qy/2�+i��−���,

�4�

where q�=�qx
2+qy

2 is the value of the in-plane component of
the phonon wave vector q, and  is the polar angle of q�,
counted from the x axis. The sample volume and density are
noted by V3d and �c, respectively. The factor �����q�� for
���� reads

�����q�� = i�−�����!

�!
�1/2

e−�2/2��−��L��
�−����2� , �5�

where �2=�2q�
2 /2 and Ln

m�x� are the associated Laguerre
polynomials. For ����, �����q�� is obtained from Eq. �5�
by interchanging the indices � and �� in the right-hand side
of Eq. �5�. The parameter 
qj is introduced as follows:
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qj =
1

2q

���q�e�

�j��q� + q�e�
�j��q�	 , �6�

where 
�� is the deformation potential tensor and e�j��q� is
the polarization vector of the jth phonon branch. For GaAs it
reduces to 
qj =
0� j1, with 
0�7 eV. The parameter 	qj is
introduced as follows:

	qj =
4�

2q2�
	���q��q�e�

�j��q� + q�e�
�j��q�	 , �7�

where 	��� is the piezomodulus tensor and � is the relative
permittivity of the material. In GaAs the piezomodulus ten-
sor is completely symmetric and only one of its off-diagonal
components is nonzero. The value of this component is de-
noted by h14 and is approximately 0.14 C/m2 in GaAs. The
parameter 	qj thus depends only on the spatial orientation of
the vector q and can be presented in the following form:

	q1 = 	0
3

2
sin2 � cos � sin 2 ,

	q2 = 	0
1

2
sin 2� cos 2 ,

	q3 = 	0
1

2
�3 cos2 � − 1�sin � sin 2 , �8�

where 	0= �4� /��h14, and � is the angle between q and the z
axis. The quantum well form factor Fnn��qz� is defined as

Fnn��qz� = �n��z�eiqzz�n�z�dz , �9�

where �n�z� is the nth size quantization level wave function
�chosen to be real�, which is completely determined by the
confining potential V�z�. As a general feature, the factor
Fnn��z�=�nn� at qz�1/a is of the order of unity at qz�1/a,
and rapidly tends to zero at qz�1/a, where a is the charac-
teristic size measure entering V�z�.

The matrix element �4� possesses the following symmetry
relation:

MX
qj�n���

n�
� = �MX−�2qy

−qj � n�

n���
��*

. �10�

We calculate �xx starting from Kubo’s formula for the
conductivity tensor22

������ =
1

V2d


0

�

dte−i�t
0

	

d��J��− i���J��t�� , �11�

which gives the exact amplitude and phase of the induced
current in an applied electric field of frequency �. Here, J�t�
is the current operator in the Heisenberg representation, V2d
is the area of the 2D plane, and 	=1/T, where T is the
temperature measured in energy units. The average denoted
by the angle brackets in Eq. �11� is carried out in the grand
canonical ensemble with the density matrix

� =
1

Z
exp�− 	�H − �N�� , �12�

where � is the electron chemical potential, N is the electron
number operator, and Z is the partition function of the system
of electrons and phonons.

In the case of a quantizing magnetic field, the events of
electron scattering are rare if compared to the frequency of
the orbital motion �cyclotron frequency�. One can say that
the electron orbital degree of freedom is frozen, and the elec-
tron scattering occurs between states characterized by the
center of orbit coordinates X and Y.23 The electron conduc-
tivity can then be related to the migration of the electron
center of orbit.24,25 Mathematically, it involves replacing the

current operator J in Eq. �11� by −eṘ, where R��X ,Y� is
the radius vector of the electron center of orbit, and adding
an antisymmetric tensor with xy-component −en2D /B to the
conductivity tensor, where n2D is the 2D electron density.
The coordinates X and Y cannot be measured simultaneously.
Their operators satisfy the commutation relation �X ,Y	= i�2.
The operator R satisfies the following equation of motion:

Ṙ =
i

�
�Hint,R	 . �13�

We shall restrict ourselves to the study of the dissipative
conductivity alone. For this purpose we rewrite the
xx-component of Eq. �11� in an equivalent form:

�xx = lim
�→+0

1

i� + ���xx�0� + 
0

�

e−i�t−�t�̇xx�t�dt� , �14�

where the response function �xx�t� is given by

�xx�t� = e2
0

	

�Ẋ�− i���Ẋ�t��d� , �15�

+ ++

++

b) c)

d)

...

e)

a)

FIG. 2. S-matrix expansion of the two-particle Green’s function
����. The solid line and the dashed line represent the Green’s func-
tions of the unperturbed electron and phonon, respectively. The
wavy line is introduced to account for the Matsubara frequency i�n

and for the action of the operator Q̂y.
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with Ẋ�t�=exp�iHt /��Ẋ exp�−iHt /��. An expression for Ẋ
can easily be obtained from Eq. �13�,

Ẋ = −
i

�



n�n���
qjX

�2qyMX
qj�n���

n�
��b−qj

† + bqj�Cn���X−�2qy

† Cn�X.

�16�

Introducing the retarded bosonic Green’s function

�R�t − t�� = − i��t − t����Ẋ�t�Ẋ�t�� − Ẋ�t��Ẋ�t�	� , �17�

and noting that

�̇xx�t� =
ie2

�
��ẊẊ�t� − Ẋ�t�Ẋ	� , �18�

one can express the dissipative conductivity in the following
way:27

�xx =
ie2

�V2d

� ��̃R���
��

�
�→0

, �19�

where the Fourier transform of �R�t� is given by

�̃R��� = 
0

�

ei�t�R�t�dt . �20�

Equation �19� reduces the calculation of the dissipative con-
ductivity to the evaluation of the two-particle Green’s func-
tion �17�. The latter can be easily performed using the finite-
temperature diagrammatic technique,26 which is based on the
Matsubara Green’s function, introduced as

���� = − �����Ẋ���Ẋ� − ��− ���ẊẊ���� , �21�

where � is the imaginary time �−	���	�, and Ẋ��� in this
formula is defined as

Ẋ��� = e��H−�N�Ẋe−��H−�N�. �22�

Performing an S-matrix expansion of the Green’s function
����, and expressing each term in terms of nonperturbed
electron and phonon Green’s functions, one obtains an infi-
nite series of diagrams, the first terms of which are shown in
Fig. 2. This series can be summed graphically to give the
diagram of Fig. 3�a�. The solid bold lines represent the exact
electron Green’s function GX�n� ; ipn�, and the dashed line
represents the exact phonon Green’s function D�qj ; i�m�.
The shaded triangle is the total vertex part of the electron-
phonon interaction, which we denote by MX

qj� n���
n� ; ipn , i�n

�.
The Fourier transform �̃R��� is obtained from the Fourier

transform of ���� by the standard analytical continuation to
the real axis,28 i.e., by the substitution i�n→�+ i�. An ana-
lytic expression for the Fourier transform of ���� follows
from the diagram of Fig. 3�a�:

�̃�i�n� = −
�4

�2	2 

n�n���

qjX



i�m



ipn

MX
qj�n���

n�
�Q̂y

2MX−�2qy

−qj � n�

n���
;ipn,i�m�D�qj ;i�m�GX−�2qy

�n���;ipn + i�m − i�n�GX�n�;ipn� ,

�23�

where the operator Q̂y acts on the total vertex part
MX

qj� n���
n� ; ipn , i�n

�, and chooses the component qy referring
to the nonperturbed phonon line of one of the fermionic

angles of the total vertex. The Matsubara frequency i�n has

to be inserted in the vertex where Q̂y acts.
In the next section we shall work in a representation

b)

a)

� +

FIG. 3. Results of graphical summation of the perturbation se-

ries expansion. �a� A diagram for the exact �̃�i�n� expressed in
terms of the exact electron Green’s function �solid line�, the exact
phonon Green’s function �dashed line�, and the total vertex part
�shaded triangle�. �b� Dyson-type equation for the total vertex part,
reducing the evaluation of the total vertex part to the problem of
electron-electron interaction via exchange of phonons. The shaded
square is the total vertex part for this problem.
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where the electron Green’s function is a matrix. It can be
obtained by projecting GX�n� ; ipn� onto the single-particle
states of the electron.

III. ENERGY SPECTRUM OF ELECTRONS IN THE
PRESENCE OF PHONONS

It is well-known that in the general case, taking into ac-
count a perturbation has two effects on a electron gas. One is
the renormalization of the energy spectrum, and the other is
the introduction of a finite lifetime for electrons. We shall
focus here on the energy renormalization effects, in a special
case when two Landau levels of different subbands of size
quantization approach each other at an energy distance com-
parable to the characteristic phonon energy. Let 1 �2� be a
combined label n� for the energy level belonging to the
lower �upper� size quantization subband, and hence E1 and E2
stand for the energies of these levels, respectively.

The renormalized electron energy spectrum can be ex-
tracted from the poles of the electron Green’s function. By
the virtue of circumstances the electron self-energy is diag-
onal in the Landau level number, and hence, so is the exact
electron Green’s function. Therefore one can consider the
Green’s function of each electron level separately. For level 1
in the presence of level 2, the Dyson equation reads

G11�ipn� = G11
�0��ipn� + G11

�0��ipn��11�ipn�G11�ipn� , �24�

where G11
�0��ipn� is the Green’s function of the nonperturbed

electron of level 1, �11�ipn� is the self-energy of the electron
of level 1, and ipn is the imaginary fermionic frequency, with
pn= �2n+1�� /	. The influence of level 2 is manifested indi-
rectly through the self-energy �11�ipn�. The lowest-order ap-
proximation for �11�ipn� is given by the diagram in Fig. 4.
An analytical expression for this diagram is

�11
�0��ipn� = �11

self�ipn� + �11
inter�ipn� , �25�

with

�11
self�ipn� = 


qj
�MX

qj�1

1
��2� Nq + nF� 1�

ipn + �qj −  1

+
Nq + 1 − nF� 1�
ipn − �qj −  1

� , �26�

and

�11
inter�ipn� = 


qj
�MX

qj�2

1
��2� Nq + nF� 2�

ipn + �qj −  2

+
Nq + 1 − nF� 2�
ipn − �qj −  2

� , �27�

where  i=Ei−�. The self-energy part �11
self accounts for the

renormalization of the energy level in the absence of other
levels. This renormalization is not expected to change sig-
nificantly in the neighborhood of the level crossing, and we
shall not take it into account, considering that it has been
included initially in the electron effective mass. This assump-
tion is correct as long as the deviation from the nonpertur-
bated energy levels is small in comparison with the charac-
teristic phonon energy.

The real part of the retarded self-energy can be used to
find the renormalized electron energy, which is equivalent to
using Brillouin-Wigner perturbation theory.26 The renormal-
ized energy can be oftained from the following equation:

E − E1 − Re �11
inter�E� = 0. �28�

Solving Eq. �28� with respect to E, one finds the renormal-

ized electron energy level Ẽ1. A similar equation holds for
level 2.

Figure 5 shows the qualitative dependence of the renor-

malized energy levels Ẽ1 and Ẽ2 on the magnetic field B for
the crossing of Landau levels �=1 and �=0 of the first and
second subbands of size quantization, respectively. One can

FIG. 4. The first term of the pertubration expansion of the elec-
tron self-energy.

B
E

ne
rg

y

δE

FIG. 5. �Color online� Qualitative behavior of the Landau levels
in the vicinity of a level-crossing. The dashed lines represent the
nonperturbed Landau levels.
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see that there are two values of B on both sides of the cross-
ing, where repulsion of levels changes to attraction. We can
prove analytically that this happens when the energy distance
betwen the two unperturbed electron levels is close to the
characteristic phonon energy �s /�+, where �+ is � at the
level crossing. This characteristic energy of phonons will re-
appear in Sec. IV in the calculation of the dissipative con-
ductivity �xx, where peculiar behavior of �xx is found at the
same characteristic magnetic fields on both sides of the level
crossing.

Notably, the typical value of the deviation �E of the
renormalized levels from the unperturbed ones is very small
for all temperatures of interest in GaAs systems. A rough
analytical estimate gives �E��T at temperatures T
��s /�+, but still low enough for the perturbation theory to
work, T��s / ���+�. The dimensionless coupling constant of
electron-phonon interaction ��0.1��100 Å� /�	2 for GaAs.29

Thus for B=6.6 T and T=10 K one obtains �E�10−1 meV.
Numerical calculations give an even smaller value of �E
�10−3 meV. We shall neglect these energy corrections in our
further calculations, stating only that the electron levels in-
tersect in the presence of equilibrium phonons.

IV. DISSIPATIVE CONDUCTIVITY

The dissipative conductivity �xx is calculated using Eq.
�19� and the expression for the Fourier transform of the two-
particle correlation function �23�. The results of the pertur-
bation theory are obtained using the S-matrix expansion for
the electron Green’s functions. The effects of renormaliza-
tion of the phonon spectrum due to the presence of electrons
will not be taken into account in what follows. We have
made a rougher approximation already, neglecting the inter-
face phonon modes and the variance of the sound velocity, as
one goes from the quantum well to the substrate material. We
use the Green’s function of nonperturbed phonons instead of
the exact phonon Green’s function.

A. The one-phonon process

This process is described by the first diagram in Fig. 2.
The analytical expression of this diagram reads

�̃0�i�n� = −
e2

�2�
4 1

	


i�m

1

	


ipn



n�n���

qjX

qy
2�MX

qj�n���

n�
��2

� D�0��qj ;i�m�GX−�2qy

�0� �n���;ipn + i�m − i�n�

�GX
�0��n�;ipn� , �29�

where GX
�0��n� , ipn�=1/ �ipn− n�� is the unperturbed electron

Green’s function, and D�0��qj , i�m�=−2��qj / ��m
2 +�2�qj

2 � is
the unperturbed phonon Green’s function. The summation
over the discrete Matsubara frequencies in Eq. �29� can be
performed easily, and using Eq. �19�, one arrives at the fol-
lowing expression for the dissipative conductivity:

�xx =
1

V2d

e2

�2�
4�	 


n�n���
qjX

qy
2�MX

qj�n���

n�
��2

f� n���Nqj�1

− f� n� + ��qj�	�� n��� −  n� − ��qj� + �Nqj + 1��1

− f� n� − ��qj�	�� n��� −  n� + ��qj�� , �30�

where f� �= �exp�	 �+1	−1 is the fermionic distribution
function and Nqj = �exp�	��qj�−1	−1 is the bosonic distribu-
tion function.

Equation �30� has the following physical interpretation.
The electron can be scattered from the lower �upper� Landau
level to the other one by absorbing �emitting� a phonon. Each
of these processes leads to the diffusion of the electron
within these two Landau levels. Thus one can think of the
diffusion of the electron in the upper level induced by the
emission of a phonon, and of the diffusion of the electron in
the lower level induced by the absorption of a phonon. At
thermal equlibrium the number of electrons transferred up
and down is equal, which can be expressed mathematically
by the identity

f�E1��1 − f�E2�	Nq0
= f�E2��1 − f�E1�	�Nq0

+ 1� , �31�

where q0= �E2−E1� / ��s�. Threfore it is not important that at
each scattering event the electron is transferred from one
Landau level to the other. In a diffusive motion the
“memory” after one scattering event is lost. Thus one can
safely assign to each Landau level a diffusion coefficient,
and disregard the conservation of the number of electrons
during an inelastic process. This way we interpret formula
�30� as a generalized Einstein relation,

�xx =
e2

2��2

f�E1�
T

Dxx
1→2 +

e2

2��2

f�E2�
T

Dxx
2→1, �32�

with the diffusion coefficients being calculated according to
the formula

Dxx
�→	 =

1

2

qj



X�

�X − X��2WXX�
�→	. �33�

The probability WXX�
�→	 for an electron in level � to be scat-

tered from point X to point X�, and at the same time to be
transferred to level 	, can as well be calculated using the
Fermi golden rule, which straightforwardly yields

WXX�
1→2 =

2�

�
�MX

qj�2

1
��2

�1 − f�E2�	Nqj�X�,X−�2qy

���E2 − E1 − ��qj� ,

WXX�
2→1 =

2�

�
�MX

−qj�1

2
��2

�1 − f�E1�	�N−qj + 1��X�,X−�2qy

���E2 − E1 + ��−qj� . �34�

The processes of phonon absorption and emission give equal
contributions into �xx. Equation �32� together with Eqs. �31�
and �33� give exactly the same result for �xx as Eq. �30�
when the contribution from the levels other than the two
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considered ones is neglected in Eq. �30�. Finally, we note
that such a simple picture of independent diffusion of elec-
trons in each Landau level is not generally valid in a non-
equilibrium situation.

Taking into account the contributions from the deforma-
tion potential �dp�, longitudinal-phonon piezoelectric
�peLA�, and transverse-phonon piezoelectric �peTA� mecha-
nisms of electron-phonon interaction, one obtains

�xx = �xx
dp + �xx

peLA + �xx
peTA, �35�

where

�xx
dp =

�2��!

�2�!

e2

�


q0LA

2 �

2�csLA�
4

1

T�T
f� 1��1

− f� 2�	Nq0LA�q0LA�

�2
�5+2��−���

0

1

dxZ�q0LAx��1

− x2��−��+1�L��
�−����1 − x2�q0LA

2 �2/2		2e−�1−x2�q0LA
2

�2/2,

�36�

and

�xx
peLA =

9��!

8�2�2�!

e2

�

e2�	q0LA

2

2�csLA�
2

1

T�T
f� 1��1

− f� 2�	Nq0LA�q0LA�

�2
�3+2��−���

0

1

dxZ�q0LAx�x2�1

− x2��−��+3�L��
�−����1 − x2�q0LA

2 �2/2		2e−�1−x2�q0LA
2

�2/2,

�37�

and

�xx
peTA =

��!

8�2�2�!

e2

�

e2�	q0TA

2

2�csTA�
2

1

T�T
f� 1��1

− f� 2�	Nq0TA�q0TA�

�2
�3+2��−���

0

1

dxZ�q0TAx��9x4

− 2x2 + 1��1 − x2��−��+2�L��
�−����1

− x2�q0TA
2 �2/2		2e−�1−x2�q0TA

2
�2/2. �38�

Here, q0j = �E2−E1� /�sj, and the form factor Z�qz�
= �Fn1n2

�qz��2 depends on the form of the quantum well po-
tential V�z�.

The largest value of �xx is obtained for the crossing of the
Landau levels with the smallest possible numbers, i.e., �=1
and ��=0, and belonging to the two lowest subbands of size
quantization. For the case of a parabolic quantum well of
characteristic size a �E12=�2 /ma2�, the calculations can be
performed analytically, using Z�qz�= �qz

2a2 /2�
�exp�−qz

2a2 /2�, and the result for ms2�E12 reads

�xx
dp =

e2

h
C1�dp

T�

T
f� 1��1 − f� 2�	Nq0LA

�7a2q0LA
9

�exp�−
�2q0LA

2

2
� , �39�

�xx
peLA =

e2

h
C2�peLA

T�

T
f� 1��1 − f� 2�	Nq0LA

�5a2q0LA
7

�exp�−
�2q0LA

2

2
� , �40�

�xx
peTA =

e2

h
C3�peTA

T�

T
f� 1��1 − f� 2�	Nq0TA

�5a2q0TA
7

�exp�−
�2q0TA

2

2
� , �41�

where C1, C2, and C3 are weak functions of the magnetic
field in the neighborhood of crossing. At the crossing point
��=a�, we obtain C1=1/105�, C2=6/5005�, and C3

=10/9009�. The effective coupling constants of electron-
phonon interaction for different mechanisms were introduced
in the following way:

� � �dp =
�
0

2

2�csLA�
4

1

T�
2 , �42�

�peLA =
e2	0

2

2�csLA
3 �

, �43�

�peTA =
e2	0

2

2�csTA
3 �

. �44�

Figure 6 shows the dependence of �xx �Eq. �35�	 on the
magnetic field B in the vicinity of an intersection of two
Landau levels in a parabolic quantum well. The magnetic
field corresponding to the intersection of the levels is that of
the minimum on the graph. The two maxima appear at mag-
netic fields close to those at which the electron-phonon scat-
tering rate is maximal. The distance between the Landau
levels at the maxima of �xx is of the order of T�=�s /�. In
computing the dependence of �xx on the magnetic field, the
electron concentration n2D was kept constant and the chemi-
cal potential � was calculated according to the following
formula:

� =
E1 + E2

2

− T ln��1 + !2 sinh2
E2 − E1

2T
− ! cosh

E2 − E1

2T

1 + !
� ,

�45�

with
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! =
�2

�+
2�0 − �N0 + 1� , �46�

where �0 is the filling factor at �=�+, and N0 is the number
of Landau levels below the two considered ones. The elec-
tron concentration n2D is related to the filling factor �0 in the
usual way, n2D=�0 /2��+

2.
We compare different contributions to �xx �see Eq. �35�	

in Fig. 7. At a small value of the quantum well width a, the
deformation potential mechanism �dashed line� dominates
the dissipative conductivity �Fig. 7�a�	. However, at a larger
value of a, the piezoelectric mechanism is the dominant con-

tribution to �xx, e.g., the piezoelectric interaction with the
transverse phonon mode �solid line� in Fig. 7�b�. This is not
surprising, since the deformation potential mechanism con-
tains one extra power of the phonon momentum, as is seen
from the matrix element �4�. The relevant phonon momen-
tum is related to the quantum well width and to the magnetic
length, q−1�a��. The characteristic well width at which
the crossover from the deformation potential to the piezo-
electric mechanism happens is given by a�
0� /eh14. We
find that although this criterion gives a characteristic a
�700 Å, the actual crossover happens at a smaller value of a
�see Fig. 7�b�	, owing to a larger overlap integral of the elec-
tron with the phonons via the piezoelectric interaction.

As it has already been mentioned in the introduction to
our paper, the main contribution to the conductivity in ex-
perimentally available systems comes from impurities. How-
ever, it can be clearly seen from the plot in Fig. 6 that the
phonon-induced conductivity is not negligibly small compar-
ing to a typical value of impurity-induced conductivity,
which is of the order of the conductance quantum for a par-
tially filled Landau level. The disorder-mediated magneto-
conductivity is noticeably smaller in wide parabolic quantum
wells,30 which represent the best system for observation of
the discussed effect. Modern experimental techniques should
be able to separate the two mechanisms, especially since the
phonon-induced contribution to the conductivity has a distin-
guished two-peak structure and completely different mag-
netic field and temperature dependencies. In addition, in our
calculations we use parameters of GaAs, which is known to
have very weak electron-phonon coupling. For some other
materials this effect can be much stronger. The enhancement
of electron-phonon scattering near the Landau level intersec-
tion described in our work is possibly responsible for some
features observed in magnetothermal conductivity of highly
oriented pyrolitic graphite.31,32 In the presence of nonequilib-
rium phonons4–7 the electron-phonon scattering mechanism
might become dominant.

B. The two-phonon process

When the distance between the two Landau levels on both
sides of the Fermi level is much greater than �s /�, the one-
phonon electron transitions become inefficient, and the two-
phonon ones should be taken into account. The two-phonon
process associated with the electron transition between two
Landau levels was considered in Ref. 8. It was shown in Ref.
33 that the two-phonon scattering is responsible for dissocia-
tion of magnetorotons in the phonon absorption spectroscopy
experiments6 in the fractional quantum Hall regime. The
two-phonon process associated with the scattering of the
electron within the same infinitely narrow Landau level was
considered in Ref. 20. Since there was a mistake in Ref. 20,
we reconsider the latter process here again.

Consider one Landau level only, which has a �-function
density of states. Within this infinitely narrow energy level,
one-phonon electron transitions are not possible, since
phonons with zero energy are not efficient for electron scat-
tering, and, moreover, there are no such phonons because the
phonon density of states is proportional to �qj

2 . However,

23 24 25 26 27 28 29 30
B (T)

0

0.005

0.01

0.015

0.02
σ xx

 (
e2 /h

) 

T=10 K;  a=50 A 

FIG. 6. �Color online� The dissipative conductivity as a function
of magnetic field in the vicinity of the crossing of Landau levels
�=1 and �=0, belonging to the first and second size-quantization
subbands, respectively. Material parameters are taken as for a GaAs
system.
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0
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peTA
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a) b)

FIG. 7. �Color online� A comparison of contributions to �xx

from different mechanisms of electron-phonon interaction at two
values of the quantum well width a. The lines are labeled as fol-
lows: the deformation potential mechanism–dp, the piezoelectric
longitudinal mechanism–peLA, and the piezoelectric transversal
mechanism–peTA.

V. N. GOLOVACH AND M. E. PORTNOI PHYSICAL REVIEW B 74, 085321 �2006�

085321-8



multiple-phonon scattering makes it possible to transfer mo-
mentum without transferring any energy to the electron. In
the simplest case a simultaneous absorption of one phonon
with momentum q and emission of another phonon with mo-
mentun q� transfers a momentum q−q� to the electron, and
does not change its energy, provided �q � = �q��.

All two-phonon processes are described by the diagrams
�b�–�e� of Fig. 2. The main contribution is given by processes
which do not involve the transition of the electron to another
Landau level. The diagram �b� accounts for the renormaliza-
tion of the phonon spectrum and will not be taken into ac-
count in this paper. The dissipative conductivity �xx can be
presented in the following form:

�xx =
e2

2��2 f� ��1 − f� �	
D

T
. �47�

The diffusion coefficient for the deformation potential type
of interaction is

Ddp =

0

4�4

2�c
2sLA

5 �2

1

�2��5  d3q d3q��qy − qy��
2Nq�1 + Nq��

���q − q���L���2q�
2 /2�L���2q��

2/2�	2�

�Z�qz�Z�− qz���
2e−�2�q�

2 +q��
2�/2 sin2��2ez�q� � q�� 	/2� ,

�48�

where ez is the unit vector normal to the quantum well plane.
At T�T� the diffusion coefficient for the lowest Landau

level �l=0� is given by

D = A1�
2�s� T

T�
�11

, �49�

where A1=29�7 /297�5.2�103.
At ��c�T�T� the diffusion coefficient for the same

Landau level is given by

D = A2�
2�s� T

T�
�2

, �50�

in which

A2 =
3

29/2�5/2
0

1 dx

�1 + x�3/2 �1

− F�5/4,7/4;1;− 4x/�1 + x�2	�K��x� , �51�

where K�z� is an elliptic integral and F�� ,	 ;n ;z� is a hyper-
geometric function. The numerical value of the constant A2 is
approximately 5.7�10−3.

V. LEVEL-BROADENING BY PHONONS

The effects of multiphonon scattering are important at
high temperatures. We can solve the Dyson equation analyti-
cally for two Landau levels in the so-called damping theo-
retical approximation.2,25 In this approximation the total ver-
tex �Fig. 3�b�	 is calculated to first order, whereas the Dyson
equation is solved in a self-consistent way. It can be justified
for temperatures or level broadening much larger than the

characteristic phonon energy, and for spectral regions away
from the spectral edges. We first recall the results for a single
Landau level2 and then consider the intersection of two Lan-
dau levels.

For a single Landau level, it is required that �i� transitions
to higher Landau levels can be neglected ���c�T�, and �ii�
the scattering with phonons is almost elastic, i.e., �s /�
�T ,". The self-energy can then be written in the following
form:

���E� =
1

4
"�

2G��E� , �52�

where

"�
2 = 8


qj

Nqj�MX
qj��

�
��2

,

which gives an expression for the electron Green’s function:

G�
±�E� =

2

E − E� ± ��E − E��2 − "�
2

. �53�

The sign in Eq. �53� is chosen so as to restore the distant
energy asymptote, G��E�#1/ �E−E�. The spectral density of
states A�=−2 Im�G�

R�E�	 is given by

A��E� = i�G�
+�E� − G�

−�E�	 =
4

"�

�1 −
�E − E��2

"�
2 , �54�

�E − E�� � "�,

and A��E�=0 elsewhere. In this approximation, no renormal-
ization of the electron energy occurs.

For two intersecting Landau levels we require that �i�
transitions from either of the two Landau levels to other Lan-
dau levels can be neglected, and �ii� the broadening of each
of the two considered Landau levels is larger than the char-
acteristic phonon energy T�. For the self-energy we obtain
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FIG. 8. �Color online� Level mixing.
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���E� =
1

4

	

"�	
2 G	�E� , �55�

in which

"�	
2 = 8


qj

Nqj�MX
qj�	

�
��2

,

where �=1,2 numbers the two considered Landau levels.
Using the identity ���E�=E−E�−1/G��E�, we obtain from
Eq. �55� the following set of coupled equations:

�E − E1�G1 −
1

4
�"11

2 G1 + "12
2 G2�G1 = 1,

�E − E2�G2 −
1

4
�"22

2 G2 + "12
2 G1�G2 = 1, �56�

which determine the Green’s functions of the two Landau
levels. If we consider the energy region E1�E�E1 on one
side of the crossing, the solution of Eqs. �56� reads

G1�E� = G1
−�E��1 −

"12
2 G2

+�E�

4��E − E1�2 − "1
2�−1

, �57�

G2�E� = G2
+�E��1 +

"12
2 G1

−�E�

4��E − E2�2 − "2
2�−1

, �58�

where G�
±�E� are given by Eq. �53�.

The resulting spectral density of states is plotted in Fig. 8.

VI. CONCLUSIONS

In this paper we considered the scattering of electrons by
equilibrium phonons in a two-subband quasi-two-
dimensional electron gas in a quantizing magnetic field. A
resonant enhancement of the dissipative conductivity was
found in the vicinity of an intersection of two Landau levels,
belonging to different size-quantization subbands.
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