119 research outputs found
Green and animal manure use in organic field crop systems
Dual-use cover/green manure (CGM) crops and animal manure are used to supply nitrogen (N) and phosphorus (P) to organically grown field crops. A comprehensive review of previous research was conducted to identify how CGM crops and animal manure have been used to meet N and P needs of organic field crops, and to identify knowledge gaps to direct future research efforts. Results indicate that: (a) CGM crops are used to provide N to subsequent cash crops in rotations; (b) CGM-supplied N generally can meet field crop needs in warm, humid regions but is insufficient for organic grain crops grown in cool and sub-humid regions; (c) adoption of conservation tillage practices can create or exacerbate N deficiencies; (d) excess N and P can result where animal manures are accessible if application rates are not carefully managed; and (e) integrating animal grazing into organic field crop systems has potential benefits but is generally not practiced. Work is needed to better understand the mechanisms governing the release of N by CGM crops to subsequent cash crops, and the legacy effects of animal manure applications in cool and sub-humid regions. The benefits and synergies that can occur by combining targeted animal grazing and CGMs on soil N, P, and other nutrients should be investigated. Improved communication and networking among researchers can aid efforts to solve soil fertility challenges faced by organic farmers when growing field crops in North America and elsewhere
Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants
The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at
energies around 3~PeV. Sources which are capable of accelerating hadrons to
such energies are called hadronic PeVatrons. However, hadronic PeVatrons have
not yet been firmly identified within the Galaxy. Several source classes,
including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron
candidates. The potential to search for hadronic PeVatrons with the Cherenkov
Telescope Array (CTA) is assessed. The focus is on the usage of very high
energy -ray spectral signatures for the identification of PeVatrons.
Assuming that SNRs can accelerate CRs up to knee energies, the number of
Galactic SNRs which can be identified as PeVatrons with CTA is estimated within
a model for the evolution of SNRs. Additionally, the potential of a follow-up
observation strategy under moonlight conditions for PeVatron searches is
investigated. Statistical methods for the identification of PeVatrons are
introduced, and realistic Monte--Carlo simulations of the response of the CTA
observatory to the emission spectra from hadronic PeVatrons are performed.
Based on simulations of a simplified model for the evolution for SNRs, the
detection of a -ray signal from in average 9 Galactic PeVatron SNRs is
expected to result from the scan of the Galactic plane with CTA after 10 hours
of exposure. CTA is also shown to have excellent potential to confirm these
sources as PeVatrons in deep observations with hours of
exposure per source.Comment: 34 pages, 16 figures, Accepted for publication in Astroparticle
Physic
Sensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic Cloud
A deep survey of the Large Magellanic Cloud at âŒ0.1-100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3-2.4 pending a flux increase by a factor of >3-4 over âŒ2015-2035. Large-scale interstellar emission remains mostly out of reach of the survey if its >10 GeV spectrum has a soft photon index âŒ2.7, but degree-scale 0.1-10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1â10 per cent of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within <100 pc. Finally, the survey could probe the canonical velocity-averaged cross-section for self-annihilation of weakly interacting massive particles for cuspy Navarro-Frenk-White profiles
Rh-POP Pincer Xantphos Complexes for C-S and C-H Activation. Implications for Carbothiolation Catalysis
The neutral RhÂ(I)âXantphos
complex [RhÂ(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)ÂCl]<sub><i>n</i></sub>, <b>4</b>, and cationic RhÂ(III) [RhÂ(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)Â(H)<sub>2</sub>]Â[BAr<sup>F</sup><sub>4</sub>], <b>2a</b>, and [RhÂ(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos-3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>)Â(H)<sub>2</sub>]Â[BAr<sup>F</sup><sub>4</sub>], <b>2b</b>, are described [Ar<sup>F</sup> = 3,5-(CF<sub>3</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>; Xantphos
= 4,5-bisÂ(diphenylphosphino)-9,9-dimethylxanthene; Xantphos-3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub> = 9,9-dimethylxanthene-4,5-bisÂ(bisÂ(3,5-bisÂ(trifluoromethyl)Âphenyl)Âphosphine].
A solid-state structure of <b>2b</b> isolated from C<sub>6</sub>H<sub>5</sub>Cl solution shows a Îș<sup>1</sup>-chlorobenzene
adduct, [RhÂ(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos-3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>)Â(H)<sub>2</sub>(Îș<sup>1</sup>-ClC<sub>6</sub>H<sub>5</sub>)]Â[BAr<sup>F</sup><sub>4</sub>], <b>3</b>. Addition of H<sub>2</sub> to <b>4</b> affords,
crystallographically characterized, [RhÂ(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)Â(H)<sub>2</sub>Cl], <b>5</b>. Addition of diphenyl
acetylene to <b>2a</b> results in the formation of the CâH
activated metallacyclopentadiene [RhÂ(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)Â(ClCH<sub>2</sub>Cl)Â(Ï,Ï-(C<sub>6</sub>H<sub>4</sub>)ÂCÂ(H)î»CPh)]Â[BAr<sup>F</sup><sub>4</sub>], <b>7</b>, a rare example of a crystallographically characterized Rhâdichloromethane
complex, alongside the RhÂ(I) complex <i>mer</i>-[RhÂ(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)Â(η<sup>2</sup>-PhCCPh)]Â[BAr<sup>F</sup><sub>4</sub>], <b>6</b>. Halide abstraction from [RhÂ(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)ÂCl]<sub><i>n</i></sub> in the presence of diphenylacetylene affords <b>6</b> as the
only product, which in the solid state shows that the alkyne binds
perpendicular to the Îș<sup>3</sup>-POP Xantphos ligand plane.
This complex acts as a latent source of the [RhÂ(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)]<sup>+</sup> fragment and facilitates
<i>ortho</i>-directed CâS activation in a number
of 2-arylsulfides to give <i>mer</i>-[RhÂ(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)Â(Ï,Îș<sup>1</sup>-Ar)Â(SMe)]Â[BAr<sup>F</sup><sub>4</sub>] (Ar = C<sub>6</sub>H<sub>4</sub>COMe, <b>8</b>; C<sub>6</sub>H<sub>4</sub>(CO)ÂOMe, <b>9</b>; C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>, <b>10</b>; C<sub>6</sub>H<sub>4</sub>CNCH<sub>2</sub>CH<sub>2</sub>O, <b>11</b>; C<sub>6</sub>H<sub>4</sub>C<sub>5</sub>H<sub>4</sub>N, <b>12</b>).
Similar CâS bond cleavage is observed with allyl sulfide,
to give <i>fac</i>-[RhÂ(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)Â(η<sup>3</sup>-C<sub>3</sub>H<sub>5</sub>)Â(SPh)]Â[BAr<sup>F</sup><sub>4</sub>], <b>13</b>. These products of CâS
activation have been crystallographically characterized. For <b>8</b> in situ monitoring of the reaction by NMR spectroscopy reveals
the initial formation of <i>fac</i>-Îș<sup>3</sup>-<b>8</b>, which then proceeds to isomerize to the <i>mer</i>-isomer. With the <i>para</i>-ketone aryl sulfide, 4-SMeC <sub>6</sub>H<sub>4</sub>COMe, CâH activation <i>ortho</i> to the ketone occurs to give <i>mer</i>-[RhÂ(Îș<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)Â(Ï,Îș<sup>1</sup>-4-(COMe)ÂC<sub>6</sub>H<sub>3</sub>SMe)Â(H)]Â[BAr<sup>F</sup><sub>4</sub>], <b>14</b>. The temporal evolution of carbothiolation catalysis using <i>mer</i>-Îș<sup>3</sup>-<b>8</b>, and phenyl acetylene
and 2-(methylthio)Âacetophenone substrates shows initial fast catalysis
and then a considerably slower evolution of the product. We suggest
that the initially formed <i>fac</i>-isomer of the CâS
activation product is considerably more active than the <i>mer</i>-isomer (i.e., <i>mer</i>-<b>8</b>), the latter of
which is formed rapidly by isomerization, and this accounts for the
observed difference in rates. A likely mechanism is proposed based
upon these data
Hydraulic Core Extraction: Cutting Device for SoilâRoot Studies
A critical objective of belowground research is to collect and process representative soil samples. Mechanical devices have been developed to quickly take soil cores in the field; however, techniques to rapidly process large-diameter soil cores are lacking. Our objective was to design and construct a soil extractionâcutting system that could effectively reduce processing time. Soil cores were extracted from large diameter steel core tubes using a custom hydraulic cylinder device that vertically pushes the soil core to a desired depth increment before cutting in a horizontal direction with another hydraulically driven device. As many as eight large cores per hour could be processed with this system. This system has been effectively used in processing soil samples from both agricultural and forestry sites to meet desired experimental goals
- âŠ