1,071 research outputs found
Dynamic and Multi-functional Labeling Schemes
We investigate labeling schemes supporting adjacency, ancestry, sibling, and
connectivity queries in forests. In the course of more than 20 years, the
existence of labeling schemes supporting each of these
functions was proven, with the most recent being ancestry [Fraigniaud and
Korman, STOC '10]. Several multi-functional labeling schemes also enjoy lower
or upper bounds of or
respectively. Notably an upper bound of for
adjacency+siblings and a lower bound of for each of the
functions siblings, ancestry, and connectivity [Alstrup et al., SODA '03]. We
improve the constants hidden in the -notation. In particular we show a lower bound for connectivity+ancestry and
connectivity+siblings, as well as an upper bound of for connectivity+adjacency+siblings by altering existing
methods.
In the context of dynamic labeling schemes it is known that ancestry requires
bits [Cohen, et al. PODS '02]. In contrast, we show upper and lower
bounds on the label size for adjacency, siblings, and connectivity of
bits, and to support all three functions. There exist efficient
adjacency labeling schemes for planar, bounded treewidth, bounded arboricity
and interval graphs. In a dynamic setting, we show a lower bound of
for each of those families.Comment: 17 pages, 5 figure
Recommended from our members
Author Correction: A cell-free platform for the prenylation of natural products and application to cannabinoid production.
In the original version of this Article, the genotype of the M30 mutant presented in Fig. 3b was given incorrectly as Y288V/A232S, and the M31 mutant was given incorrectly as M1/A232S. The correct genotype of the M30 mutant is Y288A/A232S and for M31 it is Y288V/A232S. In addition, to keep consistency in genotype formatting, the genotype of the M27 mutant should be Y288V/G286S. The errors have been corrected in both the PDF and HTML versions of the Article
A Fiber-Optic Sensor for Leak Detection in a Space Environment
A miniature fiber-optic, laser-based, interferometric leak detector is presented for application as a means to detect on-orbit gas leaks. The sensor employs a fiber-coupled modified Michelson interferometer to detect gas leaks by measuring an increase in gas density in the sensing region. Monitoring changes in the fringe pattern output by the interferometer allows for direct measurement of the gas density in the sensing region and, under the assumption of an equation of state, this can be used to obtain a pressure measurement. Measurements obtained over a pressure range from 20 mtorr to 760 torr using a prototypical interferometer on working gases of air, nitrogen, argon, and helium generally exhibit agreement with a theoretical prediction of the pressure increase required before an interference fringe completely moves over the detector. Additional measurements performed on various gases demonstrate the range of detectable species, measuring sub-torr pressure changes in the process. A high-fidelity measurement places the ultimate pressure resolution for this particular sensor configuration in the 10 mtorr range. Time-resolved data prove the capability of this sensor to detect fast gas flow phenomena associated with transients and pressure waves
System and method for determining velocity of electrically conductive fluid
A flowing electrically-conductive fluid is controlled between an upstream and downstream location thereof to insure that a convection timescale of the flowing fluid is less than a thermal diffusion timescale of the flowing fluid. First and second nodes of a current-carrying circuit are coupled to the fluid at the upstream location. A current pulse is applied to the current-carrying circuit so that the current pulse travels through the flowing fluid to thereby generate a thermal feature therein at the upstream location. The thermal feature is convected to the downstream location where it is monitored to detect a peak associated with the thermal feature so-convected. The velocity of the fluid flow is determined using a time-of-flight analysis
2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report
<p>Abstract</p> <p>Background</p> <p>2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine.</p> <p>Methods</p> <p>We report a four-year-old mentally retarded Somali boy with autism and a history of seizures, who was found to excrete increased amounts of 2-methylbutyryl glycine in the urine. The SBCAD gene was examined with sequence analysis. His development was assessed with psychometric testing before and after a trial with low protein diet.</p> <p>Results</p> <p>We found homozygosity for A > G changing the +3 position of intron 3 (c.303+3A > G) in the SBCAD gene. Psychometric testing showed moderate mental retardation and behavioral scores within the autistic spectrum. No beneficial effect was detected after 5 months with a low protein diet.</p> <p>Conclusion</p> <p>This mutation was also found in two previously reported cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD.</p
Hyperbolic Geometry of Complex Networks
We develop a geometric framework to study the structure and function of
complex networks. We assume that hyperbolic geometry underlies these networks,
and we show that with this assumption, heterogeneous degree distributions and
strong clustering in complex networks emerge naturally as simple reflections of
the negative curvature and metric property of the underlying hyperbolic
geometry. Conversely, we show that if a network has some metric structure, and
if the network degree distribution is heterogeneous, then the network has an
effective hyperbolic geometry underneath. We then establish a mapping between
our geometric framework and statistical mechanics of complex networks. This
mapping interprets edges in a network as non-interacting fermions whose
energies are hyperbolic distances between nodes, while the auxiliary fields
coupled to edges are linear functions of these energies or distances. The
geometric network ensemble subsumes the standard configuration model and
classical random graphs as two limiting cases with degenerate geometric
structures. Finally, we show that targeted transport processes without global
topology knowledge, made possible by our geometric framework, are maximally
efficient, according to all efficiency measures, in networks with strongest
heterogeneity and clustering, and that this efficiency is remarkably robust
with respect to even catastrophic disturbances and damages to the network
structure
Influenza Vaccine Effectiveness against Hospitalisation with Confirmed Influenza in the 2010-11 Seasons: A Test-negative Observational Study
Immunisation programs are designed to reduce serious morbidity and mortality from influenza, but most evidence supporting the effectiveness of this intervention has focused on disease in the community or in primary care settings. We aimed to examine the effectiveness of influenza vaccination against hospitalisation with confirmed influenza. We compared influenza vaccination status in patients hospitalised with PCR-confirmed influenza with patients hospitalised with influenza-negative respiratory infections in an Australian sentinel surveillance system. Vaccine effectiveness was estimated from the odds ratio of vaccination in cases and controls. We performed both simple multivariate regression and a stratified analysis based on propensity score of vaccination. Vaccination status was ascertained in 333 of 598 patients with confirmed influenza and 785 of 1384 test-negative patients. Overall estimated crude vaccine effectiveness was 57% (41%, 68%). After adjusting for age, chronic comorbidities and pregnancy status, the estimated vaccine effectiveness was 37% (95% CI: 12%, 55%). In an analysis accounting for a propensity score for vaccination, the estimated vaccine effectiveness was 48.3% (95% CI: 30.0, 61.8%). Influenza vaccination was moderately protective against hospitalisation with influenza in the 2010 and 2011 seasons
Morbidity from in-hospital complications is greater than treatment failure in patients with Staphylococcus aureus bacteraemia
Background: Various studies have identified numerous factors associated with poor clinical outcomes in patients with Staphylococcus aureus bacteraemia (SAB). A new study was created to provide deeper insight into in-hospital complications and risk factors for treatment failure.
Methods: Adult patients hospitalised with Staphylococcus aureus bacteraemia (SAB) were recruited prospectively into a multi-centre cohort. The primary outcome was treatment failure at 30 days (composite of all-cause mortality, persistent bacteraemia, or recurrent bacteraemia), and secondary measures included in-hospital complications and mortality at 6- and 12-months. Data were available for 222 patients recruited from February 2011 to December 2012.
Results: Treatment failure at 30-days was recorded in 14.4% of patients (30-day mortality 9.5%). Multivariable analysis predictors of treatment failure included age > 70 years, Pitt bacteraemia score ≥ 2, CRP at onset of SAB > 250 mg/L, and persistent fevers after SAB onset; serum albumin at onset of SAB, receipt of appropriate empiric treatment, recent healthcare attendance, and performing echocardiography were protective. 6-month and 12-month mortality were 19.1% and 24.2% respectively. 45% experienced at least one in-hospital complication, including nephrotoxicity in 19.5%.
Conclusions: This study demonstrates significant improvements in 30-day outcomes in SAB in Australia. However, we have identified important areas to improve outcomes from SAB, particularly reducing renal dysfunction and in-hospital treatment-related complications
- …