256 research outputs found

    Fractured identity: a framework for understanding young Asian American women's self-harm and suicidal behaviors

    Get PDF
    Despite the high suicide rate among young Asian American women, the reasons for this phenomenon remain unclear. This qualitative study explored the family experiences of 16 young Asian American women who are children of immigrants and report a history of self-harm and/or suicidal behaviors. Our findings suggest that the participants experienced multiple types of "disempowering parenting styles" that are characterized as: abusive, burdening, culturally disjointed, disengaged, and gender-prescriptive parenting. Tied to these family dynamics is the double bind that participants suffer. Exposed to multiple types of negative parenting, the women felt paralyzed by opposing forces, caught between a deep desire to satisfy their parents' expectations as well as societal expectations and to simultaneously rebel against the image of "the perfect Asian woman." Torn by the double bind, these women developed a "fractured identity," which led to the use of "unsafe coping" strategies. Trapped in a "web of pain," the young women suffered alone and engaged in self-harm and suicidal behaviors.K01 MH086366 - NIMH NIH HHS; R34 MH099943 - NIMH NIH HH

    Influence of the postoperative inflammatory response on cognitive decline in elderly patients undergoing on-pump cardiac surgery: a controlled, prospective observational study

    Get PDF
    BACKGROUND: The role of non-infective inflammatory response (IR) in the aetiology of postoperative cognitive dysfunction (POCD) is still controversial. The aim of this controlled, prospective observational study was to assess the possible relationship between the grade of IR, defined by procalcitonin (PCT) changes, and development of POCD related to cardiac surgery. METHODS: Forty-two patients, who were >/= 60 years of age and scheduled for elective cardiac surgery, were separated into the low inflammatory (LIR) and high inflammatory (HIR) response groups based on their PCT levels measured on the first postoperative day. A matched normative control group of 32 subjects was recruited from primary care practice. The PCT and C-reactive protein (CRP) levels were monitored daily during the first five postoperative days. The cognitive function and mood state were preoperatively tested with a set of five neurocognitive tests and two mood inventories and at the seventh postoperative day. The Reliable Change Index modified for practice (RCIp) using data from normative controls was applied to determine the significant decline in test performance. RESULTS: The LIR (n = 20) and HIR (n = 22) groups differed significantly in the PCT (p 0.05). Additionally, there was no difference in the mood states, anxiety levels and perioperative parameters known to influence the development of POCD. CONCLUSIONS: In this study, the magnitude of the non-infective inflammatory response generated by on-pump cardiac surgery did not influence the development of POCD in the early postoperative period in elderly patients

    CRYSTAL14: A program for the ab initio investigation of crystalline solids

    Get PDF
    The capabilities of the CRYSTAL14 program are presented, and the improvements made with respect to the previous CRYSTAL09 version discussed. CRYSTAL14 is an ab initio code that uses a Gaussian-type basis set: both pseudopotential and all-electron strategies are permitted; the latter is not much more expensive than the former up to the first-second transition metal rows of the periodic table. A variety of density functionals is available, including as an extreme case Hartree–Fock; hybrids of various nature (global, range-separated, double) can be used. In particular, a very efficient implementation of global hybrids, such as popular B3LYP and PBE0 prescriptions, allows for such calculations to be performed at relatively low computational cost. The program can treat on the same grounds zero-dimensional (molecules), one-dimensional (polymers), two-dimensional (slabs), as well as three-dimensional (3D; crystals) systems. No spurious 3D periodicity is required for low-dimensional systems as happens when plane-waves are used as a basis set. Symmetry is fully exploited at all steps of the calculation; this permits, for example, to investigate nanotubes of increasing radius at a nearly constant cost (better than linear scaling!) or to perform self-consistent-field (SCF) calculations on fullerenes as large as (10,10), with 6000 atoms, 84,000 atomic orbitals, and 20 SCF cycles, on a single core in one day. Three versions of the code exist, serial, parallel, and massive-parallel. In the second one, the most relevant matrices are duplicated, whereas in the third one the matrices in reciprocal space are distributed for diagonalization. All the relevant vectors are now dynamically allocated and deallocated after use, making CRYSTAL14 much more agile than the previous version, in which they were statically allocated.The program now fits more easily in low-memory machines (as many supercomputers nowadays are). CRYSTAL14 can be used on parallel machines up to a high number of cores (benchmarks up to 10,240 cores are documented) with good scalability, the main limitation remaining the diagonalization step. Many tensorial properties can be evaluated in a fully automated way by using a single input keyword: elastic, piezoelectric, photoelastic, dielectric, as well as first and second hyperpolarizabilies, electric field gradients, Born tensors and so forth. Many tools permit a complete analysis of the vibrational properties of crystalline compounds. The infrared and Raman intensities are now computed analytically and related spectra can be generated. Isotopic shifts are easily evaluated, frequencies of only a fragment of a large system computed and nuclear contribution to the dielectric tensor determined. New algorithms have been devised for the investigation of solid solutions and disordered systems. The topological analysis of the electron charge density, according to the Quantum Theory of Atoms in Molecules, is now incorporated in the code via the integrated merge of the TOPOND package. Electron correlation can be evaluated at the Möller–Plesset second-order level (namely MP2) and a set of double-hybrids are presently available via the integrated merge with the CRYSCOR program

    Past, present and future of charge density and density matrix refinements

    No full text
    International audienceBasic theoretical and some practical aspects of the interpretation of X-ray scattering experiments are described. Our focus is on model building and refinement associated with retrieving information related to electron density matrices from the measured data. The ill-posed nature of this inverse problem is emphasised and the physical significance, reliability and reproducibility of the properties obtained by data fitting are discussed through representative examples taken from recent studies. A special attention is devoted to the pseudoatom formalism widely used to interpret high-resolution single-crystal X-ray diffraction data to map the static electron distribution in solids. © Springer Science+Business Media B.V. 2012
    • 

    corecore