69 research outputs found

    Development of genomic resources for the prairie vole (Microtus ochrogaster): construction of a BAC library and vole-mouse comparative cytogenetic map

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prairie vole (<it>Microtus ochrogaster</it>) is a premier animal model for understanding the genetic and neurological basis of social behaviors. Unlike other biomedical models, prairie voles display a rich repertoire of social behaviors including the formation of long-term pair bonds and biparental care. However, due to a lack of genomic resources for this species, studies have been limited to a handful of candidate genes. To provide a substrate for future development of genomic resources for this unique model organism, we report the construction and characterization of a bacterial artificial chromosome (BAC) library from a single male prairie vole and a prairie vole-mouse (<it>Mus musculus</it>) comparative cytogenetic map.</p> <p>Results</p> <p>We constructed a prairie vole BAC library (CHORI-232) consisting of 194,267 recombinant clones with an average insert size of 139 kb. Hybridization-based screening of the gridded library at 19 loci established that the library has an average depth of coverage of ~10×. To obtain a small-scale sampling of the prairie vole genome, we generated 3884 BAC end-sequences totaling ~2.8 Mb. One-third of these BAC-end sequences could be mapped to unique locations in the mouse genome, thereby anchoring 1003 prairie vole BAC clones to an orthologous position in the mouse genome. Fluorescence in situ hybridization (FISH) mapping of 62 prairie vole clones with BAC-end sequences mapping to orthologous positions in the mouse genome was used to develop a first-generation genome-wide prairie vole-mouse comparative cytogenetic map. While conserved synteny was observed between this pair of rodent genomes, rearrangements between the prairie vole and mouse genomes were detected, including a minimum of five inversions and 16 inter-chromosomal rearrangements.</p> <p>Conclusions</p> <p>The construction of the prairie vole BAC library and the vole-mouse comparative cytogenetic map represent the first genome-wide modern genomic resources developed for this species. The BAC library will support future genomic, genetic and molecular characterization of this genome and species, and the isolation of clones of high interest to the vole research community will allow for immediate characterization of the regulatory and coding sequences of genes known to play important roles in social behaviors. In addition, these resources provide an excellent platform for future higher resolution cytogenetic mapping and full genome sequencing.</p

    Extreme overall mushroom genome expansion in Mycena s.s. irrespective of plant hosts or substrate specializations.

    Get PDF
    Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed

    Long-read metagenomics of soil communities reveals phylum-specific secondary metabolite dynamics

    Get PDF
    Microbial biosynthetic gene clusters (BGCs) encoding secondary metabolites are thought to impact a plethora of biologically mediated environmental processes, yet their discovery and functional characterization in natural microbiomes remains challenging. Here we describe deep long-read sequencing and assembly of metagenomes from biological soil crusts, a group of soil communities that are rich in BGCs. Taking advantage of the unusually long assemblies produced by this approach, we recovered nearly 3,000 BGCs for analysis, including 712 full-length BGCs. Functional exploration through metatranscriptome analysis of a 3-day wetting experiment uncovered phylum-specific BGC expression upon activation from dormancy, elucidating distinct roles and complex phylogenetic and temporal dynamics in wetting processes. For example, a pronounced increase in BGC transcription occurs at night primarily in cyanobacteria, implicating BGCs in nutrient scavenging roles and niche competition. Taken together, our results demonstrate that long-read metagenomic sequencing combined with metatranscriptomic analysis provides a direct view into the functional dynamics of BGCs in environmental processes and suggests a central role of secondary metabolites in maintaining phylogenetically conserved niches within biocrusts.Supplementary Data 1 : Description: Raw metagenome and metatranscriptome statistics.Supplementary Data 2 : Description: Assembly statistics of short- and long-read metagenomes as well as metatranscriptomes.Supplementary Data 3 : Description: Each biosynthetic gene cluster identified from the assembled metagenomes in this study.Supplementary Data 4 : Description: Each biosynthetic gene cluster identified in the metatranscriptomic assemblies.Supplementary Data 5 : Description: The genes used to calculate transcription of biosynthetic gene clusters and core bacterial genes.Supplementary Data 6 : Description: DESeq2 analysis of significantly transcribed genes between day and night-time transcription.Supplementary Data 7 : Description: Transcriptional scores for cation-related genes.Supplementary Data 8 : Description: Average abundance pattern for each phylum through time.Supplementary Data 9 : Description: Taxonomic composition of metagenomes and metatranscriptomes using fulllength 16S rRNA.Supplementary Data 10 : Description: Normalized sequence data showing scores of transcription at each time point with BGC type and Phylum shownThis work was partially supported by funds provided by the Office of Science Early Career Research Program Office of Biological and Environmental Research, of the U.S. Department of Energy and by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory. We also wish to acknowledge Simon Roux, Emiley Eloe-Fadrosh and Eoin Brodie for their constructive feedback.https://www.nature.com/commsbioam2022BiochemistryGeneticsMicrobiology and Plant Patholog

    Evolution of a Bitter Taste Receptor Gene Cluster in a New World Sparrow

    Get PDF
    Bitter taste perception likely evolved as a protective mechanism against the ingestion of harmful compounds in food. The evolution of the taste receptor type 2 (TAS2R) gene family, which encodes the chemoreceptors that are directly responsible for the detection of bitter compounds, has therefore been of considerable interest. Though TAS2R repertoires have been characterized for a number of species, to date the complement of TAS2Rs from just one bird, the chicken, which had a notably small number of TAS2Rs, has been established. Here, we used targeted mapping and genomic sequencing in the white-throated sparrow (Zonotrichia albicollis) and sample sequencing in other closely related birds to reconstruct the history of a TAS2R gene cluster physically linked to the break points of an evolutionary chromosomal rearrangement. In the white-throated sparrow, this TAS2R cluster encodes up to 18 functional bitter taste receptors and likely underwent a large expansion that predates and/or coincides with the radiation of the Emberizinae subfamily into the New World. In addition to signatures of gene birth-and-death evolution within this cluster, estimates of Ka/Ks for the songbird TAS2Rs were similar to those previously observed in mammals, including humans. Finally, comparison of the complete genomic sequence of the cluster from two common haplotypes in the white-throated sparrow revealed a number of nonsynonymous variants and differences in functional gene content within this species. These results suggest that interspecies and intraspecies genetic variability does exist in avian TAS2Rs and that these differences could contribute to variation in bitter taste perception in birds

    The genome of the green anole lizard and a comparative analysis with birds and mammals

    Get PDF
    The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments1. Among amniotes, genome sequences are available for mammals2 and birds3–5, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes3. Also, A. carolinensis mobile elements are very young and diverse – more so than in any other sequenced amniote genome. This lizard genome’s GC content is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds6. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations

    Versatile P(acman) BAC Libraries for Transgenesis Studies in Drosophila melanogaster

    Get PDF
    We constructed Drosophila melanogaster BAC libraries with 21-kb and 83-kb inserts in the P(acman) system. Clones representing 12-fold coverage and encompassing more than 95percent of annotated genes were mapped onto the reference genome. These clones can be integrated into predetermined attP sites in the genome using Phi C31 integrase to rescue mutations. They can be modified through recombineering, for example to incorporate protein tags and assess expression patterns

    Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies

    Get PDF
    BACKGROUND: The size and complexity of conifer genomes has, until now, prevented full genome sequencing and assembly. The large research community and economic importance of loblolly pine, Pinus taeda L., made it an early candidate for reference sequence determination. RESULTS: We develop a novel strategy to sequence the genome of loblolly pine that combines unique aspects of pine reproductive biology and genome assembly methodology. We use a whole genome shotgun approach relying primarily on next generation sequence generated from a single haploid seed megagametophyte from a loblolly pine tree, 20-1010, that has been used in industrial forest tree breeding. The resulting sequence and assembly was used to generate a draft genome spanning 23.2 Gbp and containing 20.1 Gbp with an N50 scaffold size of 66.9 kbp, making it a significant improvement over available conifer genomes. The long scaffold lengths allow the annotation of 50,172 gene models with intron lengths averaging over 2.7 kbp and sometimes exceeding 100 kbp in length. Analysis of orthologous gene sets identifies gene families that may be unique to conifers. We further characterize and expand the existing repeat library based on the de novo analysis of the repetitive content, estimated to encompass 82% of the genome. CONCLUSIONS: In addition to its value as a resource for researchers and breeders, the loblolly pine genome sequence and assembly reported here demonstrates a novel approach to sequencing the large and complex genomes of this important group of plants that can now be widely applied

    Comparative genomics of Aspergillus nidulans and section Nidulantes

    Get PDF
    Aspergillus nidulans is an important model organism for eukaryotic biology and the reference for the section Nidulantes in comparative studies. In this study, we de novo sequenced the genomes of 25 species of this section. Whole-genome phylogeny of 34 Aspergillus species and Penicillium chrysogenum clarifies the position of clades inside section Nidulantes. Comparative genomics reveals a high genetic diversity between species with 684 up to 2433 unique protein families. Furthermore, we categorized 2118 secondary metabolite gene clusters (SMGC) into 603 families across Aspergilli, with at least 40 % of the families shared between Nidulantes species. Genetic dereplication of SMGC and subsequent synteny analysis provides evidence for horizontal gene transfer of a SMGC. Proteins that have been investigated in A. nidulans as well as its SMGC families are generally present in the section Nidulantes, supporting its role as model organism. The set of genes encoding plant biomass-related CAZymes is highly conserved in section Nidulantes, while there is remarkable diversity of organization of MAT-loci both within and between the different clades. This study provides a deeper understanding of the genomic conservation and diversity of this section and supports the position of A. nidulans as a reference species for cell biology

    Erratum: Corrigendum: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution

    Get PDF
    International Chicken Genome Sequencing Consortium. The Original Article was published on 09 December 2004. Nature432, 695–716 (2004). In Table 5 of this Article, the last four values listed in the ‘Copy number’ column were incorrect. These should be: LTR elements, 30,000; DNA transposons, 20,000; simple repeats, 140,000; and satellites, 4,000. These errors do not affect any of the conclusions in our paper. Additional information. The online version of the original article can be found at 10.1038/nature0315

    Construction of a California condor BAC library and first-generation chicken–condor comparative physical map as an endangered species conservation genomics resource

    Get PDF
    AbstractTo support genomic analysis of the endangered California condor (Gymnogyps californianus), a BAC library (CHORI-262) was generated using DNA from the blood of a female. The library consists of 89,665 recombinant BAC clones providing ∼14-fold coverage of the presumed ∼1.48-Gb genome. Taking advantage of recent progress in chicken genomics, we developed a first-generation comparative chicken–condor physical map using an overgo hybridization approach. The overgos were derived from chicken (164 probes) and New World vulture (8 probes) sequences. Screening a 2.8× subset of the total library resulted in 236 BAC-gene assignments with 2.5 positive BAC clones per successful probe. A preliminary comparative chicken–condor BAC-based map included 93 genes. Comparison of selected condor BAC sequences with orthologous chicken sequences suggested a high degree of conserved synteny between the two avian genomes. This work will aid in identification and characterization of candidate loci for the chondrodystrophy mutation to advance genetic management of this disease
    corecore