230 research outputs found

    Kinematics and Mass Profile of AWM 7

    Full text link
    We have measured 492 redshifts (311 new) in the direction of the poor cluster AWM~7 and have identified 179 cluster members (73 new). We use two independent methods to derive a self-consistent mass profile, under the assumptions that the absorption-line galaxies are virialized and that they trace an underlying Navarro, Frenk & White (1997) dark matter profile: (1) we fit such an NFW profile to the radial distribution of galaxy positions and to the velocity dispersion profile; (2) we apply the virial mass estimator to the cluster. With these assumptions, the two independent mass estimates agree to \sim 15% within 1.7 h^{-1} Mpc, the radial extent of our data; we find an enclosed mass \sim (3+-0.5)\times 10^{14} h^{-1} M_\odot. The largest potential source of systematic error is the inclusion of young emission-line galaxies in the mass estimate. We investigate the behavior of the surface term correction to the virial mass estimator under several assumptions about the velocity anisotropy profile, still within the context of the NFW model, and remark on the sensitivity of derived mass profiles to outliers. We find that one must have data out to a large radius in order to determine the mass robustly, and that the surface term correction is unreliable at small radii.Comment: LaTeX, 5 tables, 7 figures, appeared as 2000 AJ 119 44; typos and Eq. 9 corrected; results are unaffecte

    A Photometric and Kinematic Study of AWM 7

    Full text link
    We have measured redshifts and Kron-Cousins R-band magnitudes for a sample of galaxies in the poor cluster AWM 7. We have measured redshifts for 172 galaxies; 106 of these are cluster members. We determine the luminosity function from a photometric survey of the central 1.2 h^{-1} x 1.2 h^{-1} Mpc. The LF has a bump at the bright end and a faint-end slope of \alpha = -1.37+-0.16, populated almost exclusively by absorption-line galaxies. The cluster velocity dispersion is lower in the core (\sim 530 km/s) than at the outskirts (\sim 680 km/s), consistent with the cooling flow seen in the X-ray. The cold core extends \sim 150 h^{-1} kpc from the cluster center. The Kron-Cousins R-band mass-to-light ratio of the system is 650+-170 h M_\odot/L_\odot, substantially lower than previous optical determinations, but consistent with most previous X-ray determinations. We adopt H_0 = 100 h km/s/Mpc throughout this paper; at the mean cluster redshift, (5247+-76 km/s), 1 h^{-1} Mpc subtends 65\farcm5.Comment: 37 pages, LaTeX, including 12 Figures and 1 Table. Accepted for publication in the Astronomical Journa

    An XMM-Newton observation of the galaxy group MKW 4

    Full text link
    We present an X-ray study of the galaxy group or poor cluster MKW 4. Working with XMM data we examine the distribution and properties of the hot gas which makes up the group halo. The inner halo shows some signs of structure, with circular or elliptical beta models providing a poor fit to the surface brightness profile. This may be evidence of large scale motion in the inner halo, but we do not find evidence of sharp fronts or edges in the emission. The temperature of the halo declines in the core, with deprojected spectral fits showing a central temperature of ~1.3 keV compared to ~3 keV at 100 kpc. In the central ~30 kpc of the group multi-temperature spectral models are required to fit the data, but they indicate a lack of gas at low temperatures. Steady state cooling flow models provide poor fits to the inner regions of the group and the estimated cooling time of the gas is long except within the central dominant galaxy, NGC 4073. Abundance profiles show a sharp increase in the core of the group, with mean abundance rising by a factor of two in the centre of NGC 4073. Fitting individual elements shows the same trend, with high values of Fe, Si and S in the core. We estimate that ~50% of the Fe in the central 40 kpc was injected by SNIa, in agreement with previous ASCA studies. Using our best fitting surface brightness and temperature models, we calculate the mass, gas fraction, entropy and mass-to-light ratio of the group. At 100 kpc (~0.1 virial radii) the total mass and gas entropy of the system (~2x10^13 Msol and ~300 keV cm^2) are quite comparable to those of other systems of similar temperature, but the gas fraction is rather low (~1%). We conclude that MKW 4 is a fairly relaxed group, which has developed a strong central temperature gradient but not a large-scale cooling flow.Comment: 17 pages, 9 postscript figures, accepted for publication in MNRA

    Observational tests of the delta_c-M_vir relation in hierarchical clustering models

    Full text link
    Observational determinations of the correlation between the characteristic density delta_c and the virial mass M_vir of dark halos constitute a critical test for models of hierarchical structure formation. Using the dynamical properties of dark halos reconstructed from the galaxy distributions in massive systems (groups/clusters) and the rotation curves in less massive systems (dwarf, low surface brightness and spiral galaxies) drawn from the literature, we confirm the existence of the delta_c-M_vir relation over a broad mass range from 10**10 to 10**15 solar masses, which is in gross consistency with the prediction of a flat cosmological model with Omega_M=0.3 and Omega_Lambda=0.7. It is pointed out that previous analyses based on the measurements of X-ray emitting gas and the hydrostatic equilibrium hypothesis, which claimed a shallower scale-free spectrum of n=-1 for initial density fluctuations, may suffer from nongravitational heating influence especially in low-mass systems.Comment: 5 pages, 1 figure, accepted for publication in A&

    SPT-CL J0546-5345: A Massive z > 1 Galaxy Cluster Selected Via the Sunyaev-Zel'dovich Effect with the South Pole Telescope

    Get PDF
    We report the spectroscopic confirmation of SPT-CL J0546-5345 at = 1.067. To date this is the most distant cluster to be spectroscopically confirmed from the 2008 South Pole Telescope (SPT) catalog, and indeed the first z > 1 cluster discovered by the Sunyaev-Zel'dovich Effect (SZE). We identify 21 secure spectroscopic members within 0.9 Mpc of the SPT cluster position, 18 of which are quiescent, early-type galaxies. From these quiescent galaxies we obtain a velocity dispersion of 1179^{+232}_{-167} km/s, ranking SPT-CL J0546-5345 as the most dynamically massive cluster yet discovered at z > 1. Assuming that SPT-CL J0546-5345 is virialized, this implies a dynamical mass of M_200 = 1.0^{+0.6}_{-0.4} x 10^{15} Msun, in agreement with the X-ray and SZE mass measurements. Combining masses from several independent measures leads to a best-estimate mass of M_200 = (7.95 +/- 0.92) x 10^{14} Msun. The spectroscopic confirmation of SPT-CL J0546-5345, discovered in the wide-angle, mass-selected SPT cluster survey, marks the onset of the high redshift SZE-selected galaxy cluster era.Comment: ApJ, in pres

    UBVRI Light Curves of 44 Type Ia Supernovae

    Get PDF
    We present UBVRI photometry of 44 type-Ia supernovae (SN Ia) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SN Ia to date, nearly doubling the number of well-observed, nearby SN Ia with published multicolor CCD light curves. The large sample of U-band photometry is a unique addition, with important connections to SN Ia observed at high redshift. The decline rate of SN Ia U-band light curves correlates well with the decline rate in other bands, as does the U-B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ~40% intrinsic scatter compared to B-band.Comment: 84 authors, 71 pages, 51 tables, 10 figures. Accepted for publication in the Astronomical Journal. Version with high-res figures and electronic data at http://astron.berkeley.edu/~saurabh/cfa2snIa

    GLUT4 and UBC9 Protein Expression Is Reduced in Muscle from Type 2 Diabetic Patients with Severe Insulin Resistance

    Get PDF
    Subgroups of patients with type 2 diabetes mellitus demand large insulin doses to maintain euglycemia. These patients are characterized by severe skeletal muscle insulin resistance and the underlying pathology remains unclear. The purpose of this study was to examine protein expression of the principal glucose transporter, GLUT4, and associated proteins in skeletal muscle from type 2 diabetic patients characterized by severe insulin resistance.Seven type 2 diabetic patients with severe insulin resistance (mean insulin dose 195 IU/day) were compared with seven age matched type 2 diabetic patients who did not require insulin treatment, and with an age matched healthy control group. Protein expression of GLUT4 and associated proteins was assessed in muscle and fat biopsies using standard western blotting techniques.GLUT4 protein expression was significantly reduced by ∼30 pct in skeletal muscle tissue from severely insulin resistant type 2 diabetic subjects, compared with both healthy controls and type 2 diabetic subjects that did not require insulin treatment. In fat tissue, GLUT4 protein expression was reduced in both diabetic groups. In skeletal muscle, the reduced GLUT4 expression in severe insulin resistance was associated with decreased ubiquitin-conjugating enzyme 9 (UBC9) expression while expression of GLUT1, TBC1D1 and AS160 was not significantly different among type 2 diabetic patients and matched controls.Type 2 diabetic patients with severe insulin resistance have reduced expression of GLUT4 in skeletal muscle compared to patients treated with oral antidiabetic drugs alone. GLUT4 protein levels may therefore play a role in the pathology behind type 2 diabetes mellitus among subgroups of patients, and this may explain the heterogeneous response to insulin treatment. This new finding contributes to the understanding of the underlying mechanisms for the development of extreme insulin resistance

    The Type Ia Supernova 1998bu in M96 and the Hubble Constant

    Get PDF
    We present optical and near-infrared photometry and spectroscopy of the type Ia SN 1998bu in the Leo I Group galaxy M96 (NGC 3368). The data set consists of 356 photometric measurements and 29 spectra of SN 1998bu between UT 1998 May 11 and July 15. The well-sampled light curve indicates the supernova reached maximum light in B on UT 1998 May 19.3 (JD 2450952.8 +/- 0.8) with B = 12.22 +/- 0.03 and V = 11.88 +/- 0.02. Application of a revised version of the Multicolor Light Curve Shape (MLCS) method yields an extinction toward the supernova of A_V = 0.94 +/- 0.15 mag, and indicates the supernova was of average luminosity compared to other normal type Ia supernovae. Using the HST Cepheid distance modulus to M96 (Tanvir et al. 1995) and the MLCS fit parameters for the supernova, we derive an extinction-corrected absolute magnitude for SN 1998bu at maximum, M_V = -19.42 +/- 0.22. Our independent results for this supernova are consistent with those of Suntzeff et al. (1999). Combining SN 1998bu with three other well-observed local calibrators and 42 supernovae in the Hubble flow yields a Hubble constant, H_0 = 64^{+8}_{-6} km/s/Mpc, where the error estimate incorporates possible sources of systematic uncertainty including the calibration of the Cepheid period-luminosity relation, the metallicity dependence of the Cepheid distance scale, and the distance to the LMC

    Discovery and Cosmological Implications of SPT-CL J2106-5844, the Most Massive Known Cluster at z > 1

    Full text link
    Using the South Pole Telescope (SPT), we have discovered the most massive known galaxy cluster at z > 1, SPT-CL J2106-5844. In addition to producing a strong Sunyaev-Zel'dovich effect signal, this system is a luminous X-ray source and its numerous constituent galaxies display spatial and color clustering, all indicating the presence of a massive galaxy cluster. VLT and Magellan spectroscopy of 18 member galaxies shows that the cluster is at z = 1.132^+0.002_-0.003. Chandra observations obtained through a combined HRC-ACIS GTO program reveal an X-ray spectrum with an Fe K line redshifted by z = 1.18 +/- 0.03. These redshifts are consistent with galaxy colors in extensive optical, near-infrared, and mid-infrared imaging. SPT-CL J2106-5844 displays extreme X-ray properties for a cluster, having a core-excluded temperature of kT = 11.0^+2.6_-1.9 keV and a luminosity (within r_500) of L_X (0.5 - 2.0 keV) = (13.9 +/- 1.0) x 10^44 erg/s. The combined mass estimate from measurements of the Sunyaev-Zel'dovich effect and X-ray data is M_200 = (1.27 +/- 0.21) x 10^15 M_sun. The discovery of such a massive gravitationally collapsed system at high redshift provides an interesting laboratory for galaxy formation and evolution, and is a powerful probe of extreme perturbations of the primordial matter density field. We discuss the latter, determining that, under the assumption of LambdaCDM cosmology with only Gaussian perturbations, there is only a 7% chance of finding a galaxy cluster similar to SPT-CL J2106-5844 in the 2500 deg^2 SPT survey region, and that only one such galaxy cluster is expected in the entire sky.Comment: 10 pages, submitted to Ap

    Disparities in appendicitis rupture rate among mentally ill patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many studies have been carried out that focus on mental patients' access to care for their mental illness, but very few pay attention on these same patients' access to care for their physical diseases. Acute appendicitis is a common surgical emergency. Our population-based study was to test for any possible association between mental illness and perforated appendicitis. We hypothesized that there are significant disparities in access to timely surgical care between appendicitis patients with and without mental illness, and more specifically, between patients with schizophrenia and those with another major mental illness.</p> <p>Methods</p> <p>Using the National Health Insurance (NHI) hospital-discharge data, we compared the likelihood of perforated appendix among 97,589 adults aged 15 and over who were hospitalized for acute appendicitis in Taiwan between the years 1997 to 2001. Among all the patients admitted for appendicitis, the outcome measure was the odds of appendiceal rupture vs. appendicitis that did not result in a ruptured appendix.</p> <p>Results</p> <p>After adjusting for age, gender, ethnicity, socioeconomic status (SES) and hospital characteristics, the presence of schizophrenia was associated with a 2.83 times higher risk of having a ruptured appendix (odds ratio [OR], 2.83; 95% confidence interval [CI], 2.20–3.64). However, the presence of affective psychoses (OR, 1.15; 95% CI: 0.77–1.73) or other mental disorders (OR, 1.58; 95% CI: 0.89–2.81) was not a significant predictor for a ruptured appendix.</p> <p>Conclusion</p> <p>These findings suggest that given the fact that the NHI program reduces financial barriers to care for mentally ill patients, they are still at a disadvantage for obtaining timely treatment for their physical diseases. Of patients with a major mental illness, schizophrenic patients may be the most vulnerable ones for obtaining timely surgical care.</p
    • …
    corecore