50 research outputs found

    Ants and Plants with Extrafloral Nectaries in Fire Successional Habitates on Andros (Bahamas)

    Get PDF
    Honey baits were used to assess the activity and abundance of nectar-drinking ants in fire successional habitats of rocklands on Andros Island, Bahamas. Vegetation was sampled in pineyard and coppice habitats (the same communities as Florida’s pine rocklands and hammocks), revealing a larger proportion of taxa with extrafloral nectaries in coppice samples, but roughly equivalent cover of plants with extrafloral nectaries in pineyard and coppice vegetation. Ant activity was greater in pineyard than in coppice habitats, with time to discovery of baits the shortest in open and recently burned pineyards, and most of the baits experiencing recruitment of ants. Overgrown pineyards and coppices both had longer time-todiscovery and much less recruitment to baits; coppice edges, more variable, were not significantly different from either of the 2 other habitat groups. Our preliminary study revealed some new records of plant genera and species with extrafloral nectaries, but all ants we observed at nectaries and on baits are also known from pine rocklands and hardwood hammocks of south Florida

    Weeds enhance pollinator diversity and fruit yield in mango

    Get PDF
    Agriculture is dependent on insect pollination, yet in areas of intensive production agriculture, there is often a decline in plant and insect diversity. As native habitats and plants are replaced, often only the weeds or unwanted vegetation persist. This study compared insect diversity on mango, Mangifera indica, a tropical fruit tree dependent on insect pollination, when weeds were present in cultivation versus when they were removed mechanically. The pollinating insects on both weeds and mango trees were examined as well as fruit set and yield in both the weed-free and weedy treatment in South Florida. There were significantly more pollinators and key pollinator families on the weedy mango trees, as well as significantly greater fruit yield in the weedy treatment compared to the weed-free treatment. Utilizing weeds, especially native species, as insectary plants can help ensure sufficient pollination of mango and increase biodiversity across crop monocropping systems

    The use of extrafloral nectar in pest management: overcoming context dependence

    Get PDF
    Extrafloral nectar (EFN) provides plants with indirect defence against herbivores by attracting predatory insects, predominantly ants. Decades of research have supported the role of EFN as an effective plant defence, dating back to Thomas Belt\u27s description of ants on acacia in 1874. Despite this extensive body of literature, knowledge of the ecological role of EFN has rarely been applied in the field of pest management. We review the existing literature on the use of EFN in agriculture and consider the obstacles that have hindered this transition. Chief among these obstacles is the influence of ecological context on the outcome of EFN-mediated interactions. As such, we consider the options for various agricultural systems in the light of the growth habit of EFN-producing species, focusing first on orchard species and then on herbaceous crops. In each case, we highlight the benefits and difficulties of utilizing EFN as a pest management tool and of measuring its efficacy. Synthesis and applications. We argue that it is time for a shift in extrafloral nectar (EFN) research towards applied settings and seek to address the question: How can a context-dependent and often inducible plant trait be utilized as a reliable tool in agricultural pest management? Breeding crops for increased EFN production, and intercropping with EFN-producing plants, can enhance assemblages of beneficial insects in many agricultural settings. Orchard systems, in particular, provide an ecological context in which the attraction of ants can contribute to cost-effective and sustainable pest management programmes over a broad geographic range

    Hanging by a coastal strand: breeding system of a federally endangered morning-glory of the south-eastern Florida coast, Jacquemontia reclinata

    Get PDF
    † Background and Aims Coastal development has led to extensive habitat destruction and the near extinction of the beach clustervine, Jacquemontia reclinata (Convolvulaceae), an endangered, perennial vine endemic to dune and coastal strand communities in south-eastern Florida. We examined the breeding system of this rare species, and observed visitors to its flowers, as part of a larger effort to document its status and facilitate its recovery. † Methods Reproductively mature experimental plants were grown from seed collected from wild plants in two of the largest remaining populations. Controlled hand pollinations on potted plants were conducted to determine the level of compatibility of the species and to investigate compatibility within and between populations. Seeds from the hand pollinations were planted in soil, and they were monitored individually, recording time to seed germination (cotyledon emergence). Wild plants were observed in several of the remaining populations to determine which species visited the flowers. † Key Results Hand pollination and seed planting experiments indicate that J. reclinata has a mixed mating system: flowers are able to set fruit with viable seeds with self-pollen, but outcross pollen produces significantly greater fruit and seed set than self-pollen (50 % for crosses vs. ,25 % for self-pollinations). Visitors included a wide array of insect species, primarily of the orders Diptera, Hymenoptera and Lepidoptera. All visitors captured and examined carried J. reclinata pollen, and usually several other types of pollen. † Conclusions Remnant populations of beach clustervine will have greater reproductive success not only if floral visitor populations are maintained, but also if movement of either pollen or seed takes place between populations. Restoration efforts should include provisions for the establishment and maintenance of pollinator populations

    Hanging by a coastal strand: breeding system of a federally endangered morning-glory of the south-eastern Florida coast, Jacquemontia reclinata

    Get PDF
    Aims Coastal development has led to extensive habitat destruction and the near extinction of the beach clustervine, Jacquemontia reclinata (Convolvulaceae), an endangered, perennial vine endemic to dune and coastal strand communities in south-eastern Florida. We examined the breeding system of this rare species, and observed visitors to its flowers, as part of a larger effort to document its status and facilitate its recovery. † Methods Reproductively mature experimental plants were grown from seed collected from wild plants in two of the largest remaining populations. Controlled hand pollinations on potted plants were conducted to determine the level of compatibility of the species and to investigate compatibility within and between populations. Seeds from the hand pollinations were planted in soil, and they were monitored individually, recording time to seed germination (cotyledon emergence). Wild plants were observed in several of the remaining populations to determine which species visited the flowers. † Key Results Hand pollination and seed planting experiments indicate that J. reclinata has a mixed mating system: flowers are able to set fruit with viable seeds with self-pollen, but outcross pollen produces significantly greater fruit and seed set than self-pollen (50 % for crosses vs. ,25 % for self-pollinations). Visitors included a wide array of insect species, primarily of the orders Diptera, Hymenoptera and Lepidoptera. All visitors captured and examined carried J. reclinata pollen, and usually several other types of pollen. † Conclusions Remnant populations of beach clustervine will have greater reproductive success not only if floral visitor populations are maintained, but also if movement of either pollen or seed takes place between populations. Restoration efforts should include provisions for the establishment and maintenance of pollinator populations

    Developing Ecological Criteria for Prescribed Fire in South Florida Pine Rockland Ecosystems

    Get PDF
    The pine rocklands of South Florida, characterized by a rich herbaceous flora with many narrowly endemic taxa beneath an overstory of south Florida slash pine (Pinus elliottii var. densa), are found in three areas: the Miami Rock Ridge of southeastern peninsular Florida, the Lower Florida Keys, and slightly elevated portions of the southern Big Cypress National Preserve. Fire is an important element in these ecosystems, since in its absence the pine canopy is likely to be replaced by dense hardwoods, resulting in loss of the characteristic pineland herb flora. Prescribed fire has been used in Florida Keys pine forests since the creation of the National Key Deer Refuge (NKDR), with the primary aim of reducing fuels. Because fire can also be an effective tool in shaping ecological communities, we conducted a 4-year research study which explored a range of fire management options in NKDR. The intent of the study was to provide the Fish and Wildlife Service and other land managers with information regarding when and where to burn in order to perpetuate these unique forests

    Effects of Fire Intensity on Vital Rates of an Endemic Herb of the Florida Keys, USA

    Get PDF
    ABSTRACT: Fire intensity is one of the important components of a fire regime. However, relatively few studies have linked fire intensity with post-fire population vital rates. In this study, we explored the effects of fire intensity on population vital rates of Chamaecrista keyensis Pennell (Fabaceae) up to two years post-fire. C. keyensis is an endemic understory plant of pine rockland, a fire-dependent ecosystem of the Lower Florida Keys. We measured one fire intensity indicator, fire temperature reached by steel plates on the ground, during three prescribed fires at different sites. We followed marked individuals up to two years post-fire to derive annual survival, annual growth rate, percentage of fruiting plants, mean number of fruits per reproductive plant, and number of seedlings per census plot (1 m 2 ) of C. keyensis. We found fire intensity had significant effects on reproduction in the first year post-fire only. More specifically, mean number of fruits and percentage of fruiting plants increased as fire intensity increased. Results from this study suggest that extremely low fire intensity caused by very short fire return intervals (e.g., less than three years) may not provide sufficient stimulation to reproduction to achieve the best post-fire recovery for C. keyensis

    Alteration of Forest Structure Modifies the Distribution of Scale Insect, Stigmacoccus garmilleri, in Mexican Tropical Montane Cloud Forests

    Get PDF
    Stigmacoccus garmilleri Foldi (Hemiptera: Margarodidae) is an ecologically important honeydew-producing scale insect associated with oak trees (Quercus spp.) in highland forests of Veracruz, Mexico. The honeydew exudates of S. garmilleri serve as a significant nutrient source to many species of birds, insects, and sooty molds. Oak trees found in the forest interior, forest edge, and those scattered in pasture areas support scale insect colonies, though the pattern of insect infestations on trees within these varying landscape types has not been elucidated. This study aims to describe the distribution of scale insect infestation and any distinctions in honeydew production based on tree location. Scale insect density, honeydew volume, and sugar concentration were surveyed throughout a continuous landscape that included both patches of forest and scattered pasture trees. In addition, the anal filament through which the honeydew drop is secreted was also measured and was experimentally removed to test and measure regrowth. Scale insect densities on tree trunks were greatest on pasture trees, while intermediate densities were found on trees at the forest edge, and low densities on interior forest trees, suggesting that trees in disturbed areas are more susceptible to scale insect infestation. Trees with small diameters at breast height had significantly higher insect densities than trees with medium to large diameters. Trunk aspect (North, South, East, and West) was not a significant determinant of scale insect density. In forested areas higher densities of scale insects were found at three meters height in comparison to lower heights. Sugar concentrations and drop volumes of honeydew in forest and pasture areas were not significantly different. However, scale-insect anal tubes/filaments were significantly longer in pasture than they were in forests. Sugar concentrations of honeydew appeared to be positively correlated with temperature and negatively correlated with relative humidity. Experiments indicated that anal filaments could grow approximately 4 mm every 24 hours, and average tube growth was significantly faster in pasture than in forest, suggesting that there may be a physiological effect on the insect due to landscape disturbance. The results obtained in this study describe the increases in scale insect infestation of trees with forest disturbance. The effect of these increased scale insect densities on the host tree physiology is still to be resolved

    The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study

    Get PDF
    Background and Aims Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions. Methods The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated. Key Results Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented. Conclusions Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades

    The role of herbivory in regeneration.

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/52826/1/1259.pdfDescription of 1259.pdf : Access restricted to on-site users at the U-M Biological Station
    corecore