1,097 research outputs found

    Testing matter effects in propagation of atmospheric and long-baseline neutrinos

    Full text link
    We quantify our current knowledge of the size and flavor structure of the matter effects in the evolution of atmospheric and long-baseline neutrinos based solely on the analysis of the corresponding neutrino data. To this aim we generalize the matter potential of the Standard Model by rescaling its strength, rotating it away from the e-e sector, and rephasing it with respect to the vacuum term. This phenomenological parametrization can be easily translated in terms of non-standard neutrino interactions in matter. We show that in the most general case, the strength of the potential cannot be determined solely by atmospheric and long-baseline data. However its flavor composition is very much constrained and the present determination of the neutrino masses and mixing is robust under its presence. We also present an update of the constraints arising from this analysis in the particular case in which no potential is present in the e-mu and e-tau sectors. Finally we quantify to what degree in this scenario it is possible to alleviate the tension between the oscillation results for neutrinos and antineutrinos in the MINOS experiment and show the relevance of the high energy part of the spectrum measured at MINOS.Comment: PDFLaTeX file using JHEP3 class, 25 pages, 7 figures included. Accepted for publication in JHE

    Integration Concept of Injection, Forming and Foaming: A Practical Approach to Manufacture Hybrid Structures

    Get PDF
    Motivated by the concept of the integrative production systems, the hybrid process of polymer injection molding and sheet metal forming, known as polymer injection forming (PIF), has been introduced to manufacture sheet metal-polymer components in a single operation. Despite the wide potential application of this technology, its implementation in actual industrial production has been hindered due to several challenges; a thick layer of polymer where there is deep deformation, non-uniform deformation due to pressure loss and the opposite phenomena of shrinkage and springback. To mitigate these practical issues, the novel idea of integrating supercritical fluid (Sc.F.) technology with the PIF process is introduced in this work. As the proposed technology is a manufacturing innovation, with no available information in the literature correlating to this concept, two sets of experiments are designed to investigate the feasibility of this integration. In the first set, the effect of blank material and shot volume as design variables were investigated over a range of Sc.F. weight percentage. To improve the cell morphology in experiments with the low-strength sheet material, several other processing scenarios are explored in the second set of experiments. The results of this study clearly demonstrate the capabilities of this concept manufacturing process in terms of initiating the foaming process within the simultaneous injection/forming process, ensuring weight reduction (of up to 16%) and complete elimination of issues related to shrinkage

    Freezing and chemical preservatives alter the stable isotope values of carbon and nitrogen of the Asiatic clam (Corbicula fluminea)

    Get PDF
    We tested the impacts of most common sample preservation methods used for aquatic sample materials on the stable isotope ratios of carbon and nitrogen in clams, a typical baseline indicator organism for many aquatic food web studies utilising stable isotope analysis (SIA). In addition to common chemical preservatives ethanol and formalin, we also assessed the potential impacts of freezing on δ¹³C and δ¹⁵N values and compared the preserved samples against freshly dried and analysed samples. All preservation methods, including freezing, had significant impacts on δ¹³C and δ¹⁵N values and the effects in general were greater on the carbon isotope values (1.3-2.2% difference) than on the nitrogen isotope values (0.9-1.0% difference). However, the impacts produced by the preservation were rather consistent within each method during the whole 1 year experiment allowing these to be accounted for, if clams are intended for use in retrospective stable isotope studies

    HGF Mediates the Anti-inflammatory Effects of PRP on Injured Tendons

    Get PDF
    Platelet-rich plasma (PRP) containing hepatocyte growth factor (HGF) and other growth factors are widely used in orthopaedic/sports medicine to repair injured tendons. While PRP treatment is reported to decrease pain in patients with tendon injury, the mechanism of this effect is not clear. Tendon pain is often associated with tendon inflammation, and HGF is known to protect tissues from inflammatory damages. Therefore, we hypothesized that HGF in PRP causes the anti-inflammatory effects. To test this hypothesis, we performed in vitro experiments on rabbit tendon cells and in vivo experiments on a mouse Achilles tendon injury model. We found that addition of PRP or HGF decreased gene expression of COX-1, COX-2, and mPGES-1, induced by the treatment of tendon cells in vitro with IL-1β. Further, the treatment of tendon cell cultures with HGF antibodies reduced the suppressive effects of PRP or HGF on IL-1β-induced COX-1, COX-2, and mPGES-1 gene expressions. Treatment with PRP or HGF almost completely blocked the cellular production of PGE2 and the expression of COX proteins. Finally, injection of PRP or HGF into wounded mouse Achilles tendons in vivo decreased PGE2 production in the tendinous tissues. Injection of platelet-poor plasma (PPP) however, did not reduce PGE2 levels in the wounded tendons, but the injection of HGF antibody inhibited the effects of PRP and HGF. Further, injection of PRP or HGF also decreased COX-1 and COX-2 proteins. These results indicate that PRP exerts anti-inflammatory effects on injured tendons through HGF. This study provides basic scientific evidence to support the use of PRP to treat injured tendons because PRP can reduce inflammation and thereby reduce the associated pain caused by high levels of PGE2. © 2013 Zhang et al

    Cadmium Exposure and Neurodevelopmental Outcomes in U.S. Children

    Get PDF
    Background: Low-level environmental cadmium exposure in children may be associated with adverse neurodevelopmental outcomes

    Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory

    Full text link
    The impact of heavy mediators on neutrino oscillations is typically described by non-standard four-fermion interactions (NSIs) or non-unitarity (NU). We focus on leptonic dimension-six effective operators which do not produce charged lepton flavor violation. These operators lead to particular correlations among neutrino production, propagation, and detection non-standard effects. We point out that these NSIs and NU phenomenologically lead, in fact, to very similar effects for a neutrino factory, for completely different fundamental reasons. We discuss how the parameters and probabilities are related in this case, and compare the sensitivities. We demonstrate that the NSIs and NU can, in principle, be distinguished for large enough effects at the example of non-standard effects in the μ\mu-τ\tau-sector, which basically corresponds to differentiating between scalars and fermions as heavy mediators as leading order effect. However, we find that a near detector at superbeams could provide very synergistic information, since the correlation between source and matter NSIs is broken for hadronic neutrino production, while NU is a fundamental effect present at any experiment.Comment: 32 pages, 5 figures. Final version published in JHEP. v3: Typo in Eq. (27) correcte

    Effective Dark Matter Model: Relic density, CDMS II, Fermi LAT and LHC

    Full text link
    The Cryogenic Dark Matter Search recently announced the observation of two signal events with a 77% confidence level. Although statistically inconclusive, it is nevertheless suggestive. In this work we present a model-independent analysis on the implication of a positive signal in dark matter scattering off nuclei. Assuming the interaction between (scalar, fermion or vector) dark matter and the standard model induced by unknown new physics at the scale Λ\Lambda, we examine various dimension-6 tree-level induced operators and constrain them using the current experimental data, e.g. the WMAP data of the relic abundance, CDMS II direct detection of the spin-independent scattering, and indirect detection data (Fermi LAT cosmic gamma-ray), etc. Finally, the LHC reach is also explored

    Evidence for the Decay D0K+ππ+πD^0\to K^+ \pi^-\pi^+\pi^-

    Full text link
    We present a search for the ``wrong-sign'' decay D0 -> K+ pi- pi+ pi- using 9 fb-1 of e+e- collisions on and just below the Upsilon(4S) resonance. This decay can occur either through a doubly Cabibbo-suppressed process or through mixing to a D0bar followed by a Cabibbo-favored process. Our result for the time-integrated wrong-sign rate relative to the decay D0 -> K- pi+ pi- pi+ is (0.0041 +0.0012-0.0011(stat.) +-0.0004(syst.))x(1.07 +-0.10)(phase space), which has a statistical significance of 3.9 standard deviations.Comment: 9 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PR

    Hadronic Mass Moments in Inclusive Semileptonic B Meson Decays

    Full text link
    We have measured the first and second moments of the hadronic mass-squared distribution in B -> X_c l nu, for P(lepton) > 1.5 GeV/c. We find <M_X^2 - M_D[Bar]^2> = 0.251 +- 0.066 GeV^2, )^2 > = 0.576 +- 0.170 GeV^4, where M_D[Bar] is the spin-averaged D meson mass. From that first moment and the first moment of the photon energy spectrum in b -> s gamma, we find the HQET parameter lambda_1 (MS[Bar], to order 1/M^3 and beta_0 alpha_s^2) to be -0.24 +- 0.11 GeV^2. Using these first moments and the B semileptonic width, and assuming parton-hadron duality, we obtain |V_cb| = 0.0404 +- 0.0013.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PR

    Observation of the Ωc0\Omega_{c}^{0} Charmed Baryon at CLEO

    Full text link
    The CLEO experiment at the CESR collider has used 13.7 fb1^{-1} of data to search for the production of the Ωc0\Omega_c^0 (css-ground state) in e+ee^{+}e^{-} collisions at s10.6\sqrt{s} \simeq 10.6 {\rm GeV}. The modes used to study the Ωc0\Omega_c^0 are Ωπ+\Omega^- \pi^+, Ωπ+π0\Omega^- \pi^+ \pi^0, ΞKpi+π+\Xi^- K^- pi^+ \pi^+, Ξ0Kpi+\Xi^0 K^- pi^+, and Ωπ+ππ+\Omega^- \pi^+ \pi^- \pi^+. We observe a signal of 40.4±\pm9.0(stat) events at a mass of 2694.6±\pm2.6(stat)±\pm1.9(syst) {\rm MeV/c2c^2}, for all modes combined.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN
    corecore