187 research outputs found

    Triple-q octupolar ordering in NpO_2

    Full text link
    We report the results of resonant X-ray scattering experiments performed at the Np M_4,5 edges in NpO_2. Below T_0 = 25 K, the development of long-range order of Np electric quadrupoles is revealed by the growth of superlattice Bragg peaks. The electronic transition is not accompanied by any measurable crystallographic distortion, either internal or external, so the symmetry of the system remains cubic. The polarization and azimuthal dependence of the intensity of the resonant peaks is well reproduced assuming Templeton scattering from a triple-q longitudinal antiferroquadrupolar structure. Electric quadrupole order in NpO_2 could be driven by the ordering at T_0 of magnetic octupoles of Gamma_5 symmetry, splitting the Np ground state quartet and leading to a singlet ground state with zero dipole magnetic moment.Comment: 4 Pages, 3 Figures, submitted to Phys. Rev. Lett. v2: resubmitted after referee report

    Lattice Distortion and Octupole Ordering Model in CexLa1-xB6

    Full text link
    Possible order parameters of the phase IV in CexLa1-xB6 are discussed with special attention to the lattice distortion recently observed. A \Gamma_{5u}-type octupole order with finite wave number is proposed as the origin of the distortion along the [111] direction. The \Gamma_8 crystalline electric field (CEF) level splits into three levels by a mean field with the \Gamma_{5u} symmetry. The ground and highest singlets have the same quadrupole moment, while the intermediate doublet has an opposite sign. It is shown that any collinear order of \Gamma_{5u}-type octupole moment accompanies the \Gamma_{5g}-type ferro-quadrupole order, and the coupling of the quadrupole moment with the lattice induces the distortion. The cusp in the magnetization at the phase transition is reproduced, but the internal magnetic field due to the octupole moment is smaller than the observed one by an order of magnitude.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Terahertz sampling rates with photonic time-stretch for electron beam diagnostics

    Get PDF
    To understand the underlying complex beam dynamics in electron storage rings often large numbers of single-shot measurements must be acquired continuously over a long period of time with extremely high temporal resolution. Photonic time-stretch is a measurement method that is able to overcome speed limitations of conventional digitizers and enable continuous ultra-fast single-shot terahertz spectroscopy with rates of trillions of consecutive frames. In this contribution, a novel ultra-fast data sampling system based on photonic time-stretch is presented and the performance is discussed. THERESA (TeraHErtz REadout SAmpling) is a data acquisition system based on the recent ZYNQ-RFSoC family. THERESA has been developed with an analog bandwidth of up to 20 GHz and a sampling rate of up to 90 GS s−1. When combined with the photonic time-stretch setup, the system will be able to sample a THz signal with an unprecedented frame rate of 8 Tf s−1. Continuous acquisition for long observation times will open up new possibilities in the detection of rare events in accelerator physics

    Ultra-Fast Line-Camera KALYPSO for fs-Laser-Based Electron Beam Diagnostics

    Get PDF
    A very common bottleneck to study short electron bunch dynamics in accelerators is a detection scheme that can deal with high repetition rates in the MHz range. The KIT electron storage ring KARA (Karlsruhe Research Accelerator) is the first storage ring with a near-field single-shot electro-optical (EO) bunch profile monitor installed for the measurement of electron bunch dynamics in the longitudinal phase-space. Using electro-optical spectral decoding (EOSD) it is possible to imprint the bunch profile on chirped laser pulses subsequently read out by a spectrometer and a camera. However, commercially available cameras have a drawback in their acquisition rate, which is limited to a few hundred kHz. Hence, we have developed KALYPSO, an ultra-fast line camera capable of operating in the MHz regime. Its modular approach allows the installation of several sensors e.g. Si, InGaAs, PbS, PbSe to cover a wide range of spectral sensitivities. In this contribution, an overview of the EOSD experimental setup and the detector system installed for longitudinal bunch studies will be presented
    corecore