

RESEARCH FOR GRAND CHALLENGES

<u>M. M. Patil</u>, M. Caselle, E. Bründermann, T. Dritschler, A. Ebersoldt, S. Funkner, A. Kopmann, M. Nasse, G. Niehues, B. Steffen, C. Widmann, A.-S. Müller, M. Weber

KALYPSO – An ultra-fast and versatile detector for wide range spectral measurements

Beam Physics/

www.helmholtz.de

Motivation

 To understand complex beam dynamics occuring in short time scales, fast real-time measurements are essential

Requirements:

- Detectors with repetition rates in MHz regime and fs-ps time resolution
- High spatial resolution, broad field of view and wide spectral sensitivity
- Continous and long acquisiton time from secs to hours or days
- Synchronize several diagnostic tools

KALYPSO (KArlsruhe Linear arraY detector for MHz rePetition rate SpectrOscopy)

Ultra-fast detector system with very wide spectral sensitivity

- Sensor
 - Several sensors technologies available
- ASIC Gotthard
 - Low-noise and MHz frame rate
- ADCs
 - Integrated up to 64 parallel ADC channels each operating up to 125 MS/s
- External clock inputs
 - For synchronizing Kalypso to experimental setup
- Femtosecond time jitter clock distribution
 - Programmable for user applications
- FMC Vita-57.1 connector
 - Compatible with standalone and µTCA based DAQ system

Sensor Technologies

Custom microstrip silicon sensor optimized for photon science

- Designed at KIT and fabricated at FBK, Italy
- Features:
 - Microstrip channels pitch: 25 μm and 45 μm
 - Array size: 256, 512, 1024, 2048 pixels
 - Wide field-of-view compatible with beam spot size (KARA, EuXFEL, TELBE, many others)
- Optimized sensor QE by anti-reflection coating layer:
 - Near-UV (from 350 nm)
 - Visible
 - Near-IR (up to 1050 nm)

HELMHOLTZ

M. M. Patil, et.al, TWEPP 2018, ISSN: 18248039

Sensor Technologies

Extending wavelength sensitivity by InGaAs, PbS, PbSe

- Sensor based on PbS has wavelength sensitivity upto 3.3 µm
- Sensor based on PbSe has wavelength sensitivity upto 5 µm
- Inital compatibility test done with Kalypso with a 1560 nm Laser
- New InGaAs sensor provided by Hamamatsu under "special user agreement" with 25 µm pitch and array size up to 1024 pixels
 - Spectral response range 900 to 1700 nm

Gotthard version 2

A low-noise ASIC with a frame rate up to 12 MHz

- The ASIC has been designed in CMOS UMC 110 nm technology
- 128 input channels and 16 output channels
- Charge Sensitive Amplifier capable of operating with semiconductor sensors: Si, InGaAs, PbS, PbSe
- High linearity and low noise (low to 217 e-) architecture
- High-dynamic range by gain switching
- Radiation hardness achieved by enclosed layout transistor & p+ guardring encapsulation

Gotthard version 2

A low-noise ASIC with a frame rate up to 12 MHz

- The ASIC has been designed in CMOS UMC 110 nm technology
- 128 input channels and 16 output channels
- Charge Sensitive Amplifier capable of operating with semiconductor sensors: Si, InGaAs, PbS, PbSe
- High linearity and low noise (low to 217 e-) architecture
- High-dynamic range by gain switching
- Radiation hardness achieved by enclosed layout transistor & p+ guardring encapsulation Hardening by layout:

HELMHOLTZ

High density interconnections and packaging

- Wire-bonding by aluminium wedge to wedge ultrasonic process,
- Channel pitch of < 50 µm by 23 µm wire</p>
- Glob-top encapsulation for damage prevention
- 8 ASICs to be glued and wire-bonded
- 1 large sensor (~1300 wirebondings)

Data acquisition flow - current

MT Annual Meeting 2021

KALYPSO based on LGAD

Shot-to-shot measurements of at hundreds Mfps

- Fine-pitch LGAD sensor with continuous data acquisition at hundreds of MHz
- Fine pitch achieved by trench isolation (down to 50 µm)
- Rise time in few tens of ps
- The LGAD is currently in production @FBK, Trento, and will soon be available at KIT for priliminary tests
- Initial tests and characterizations to be done @ 12 MHz
- Readout ASIC in SiGe technology to be designed by 2024

Trench isolated LGAD structure no-gain region of ~ few μm

Microstrip sensors 50 × 3000 µm²

New TI-LGAD

For fast timing and high spatial resolution applications

- Several shallow trench insulation characterisitcs to be studied
- Designed for particle physics as well as photon science
- The layout optimized for photon science (minimum metalization)
- The wafers are now in a final stage of passivation lithography

HELMHOLTZ

Courtesy of G. Paternoster , Giacomo Borghi (FBK) Work performed in the framework of RD50

MT Annual Meeting 2021

High-Flex 2

Readout FPGA card for realtime control and machine learning

FEATURES

- Zynq Ultrascale+ MPSoC
- 12 duplex FireFly data link (336 Gbps)
- PCIe Gen 3 and Gen 4 (240 Gbps)
- DDR4 Chips for Programmable Logic (PL)
- Ethernet, SD, USB for PS

DTS talk by A. Ebersoldt

KALYPSO Evolution

	2014-2019	2020-2021	From 2021
Specifications	KALYPSO v 1	KALYPSO v 2	KALYPSO v 3
Sensor	Si, InGaAs, PbS, PbSe		
Pitch	<u>50 μm</u>	➡ <u>25 μm/</u>	<u>΄ 45 μm</u>
ASIC	Gotthard v1.6		Gotthard v2
Framerate (max)	<u>2.7 MHz</u>		<u>12 MHz</u>
DAQ	Hi-Flex v1		Hi-Flex v2
Status/Phase	Production		Design

EO spectral decoding @ 1050 nm

- Non destuctive measurement of longitudinal profile with fs time resolution at MHz repetition rate
- Yb Laser @1060 nm, synchronised to the repetition rate (2.7 MHz) of the strorage ring
- Single-shot mode
- Near-field setup, far-field setup currently being worked on

KALYPSO enables resolving fast dynamics of e- bunches with fs time resolution

G. Niehues, et al., DOI:10.18429/JACoW-IPAC

S. Funkner, et.al, DOI:10.1103/PhysRevAccelBeams.22.022801

Phase Space Tomography of Electron Bunches during the **Microbunching Instability**

revolution plots/ sinograms

S. Funkner, et.al, arXiv preprint, arXiv:1912.01323

Courtesy: S. Funkner, G. Niehues

HELMHOLTZ

15

MT Annual Meeting 2021

Applications of KALYPSO Eu-XFEL

- Single-shot longitudinal bunch profile monitoring at the European X-ray Free Electron Laser (XFEL) for electron bunch lengths down to 200 fs (rms)
- EO detection system, includes the Yb-fiber laser, optics setup with the GaP crystal at the accelerator beamline
- Kalypso has been integrated to operate at 2.7 MHz, with readout electronics based on µTCA architecture

KALYPSO enables resolving arrival time and bunch length with fs time resolution

Horizontal bunch profile measurements @ 400 nm to 700 nm

KALYPSO

- Energy spread of electron bunches is an important parameter to understand microbunching instability, but it cannot be measured directly
- Horizontal bunch profile measurements in a dispersive section
- Measuring emitted incoherent synchrotron radiation (> 400 nm) at visible light diagnostics port of KARA

B. Kehrer, et.al, 10.1103/PhysRevAccelBeams.21.102803

KARA

Fine tuning of Free Electron Lasers (FELs) @ FLASH, DESY at 1 MHz

Start up of FEL tuning Instabilities at the end of pulse train

After machine tuning FEL spectra more uniform over pulse train

courtesy of S. Düsterer

Laser Diagnostics

 Measurments of a 1560 nm, < 90 fs laser using KALYPSO based on : InGaAs sensor, frame rate : 2.7 MHz , repetition rate of laser : 62.5 MHz

Applications of KALYPSO - prospects

Medical imaging

courtesy of B. Jalali

Applications of KALYPSO - prospects

Material Science

HELMHOLTZ

A high acquisition rate spectrometer will be used for:

- Monitoring the carrier-envelope phase (CEP) Currently, there is a lack of techniques for measuring the CEP stability of pulse trains with 0.5-10 MHz repetition rates -> Phase tagging
- Study of CEP-dependent soliton dynamics
- Acquisition of single-shot spectra at MHz repetition rate for studies of CEP-dependent currents in 2D materials via unsupervised machining learning
- Acquisition of CARS spectra on sub-ms timescale with a compact and low-cost system, this requires recording singleshot spectra at MHz repetition rates

courtesy of F. Tani

 $\omega/2\pi$ (THz)

Conclusion

- Modern photon science detectors relies on: custom ASIC design, semiconductor sensor design and fabrication, high-density interconnect technologies, high-throughput DAQ, data processing by AI and more
- Close collaboration between physicists and electronic engineers
- KALYPSO is a fundamental tool for understanding beam dynamics of ultra-short bunches
- This detector system has been successfully installed at various synchrotron facilities

