7 research outputs found

    Biorelevant In Vitro Skin Permeation Testing and In Vivo Pharmacokinetic Characterization of Lidocaine from a Nonaqueous Drug-in-Matrix Topical System.

    No full text
    Recently, lidocaine topical systems utilizing nonaqueous matrices have been developed and provide efficient lidocaine delivery through the skin, such that lower concentrations of drug provide equivalent or greater drug delivery than drug-in-matrix hydrogel lidocaine patches. This study characterizes drug delivery from a nonaqueous lidocaine topical system with increasing drug load both in vitro and in vivo. Topical systems formulated with either 1.8% or 5.4% lidocaine were applied to healthy volunteers' backs (n = 15) for 12 h in a single-center, open-label, four-treatment, four-period crossover pharmacokinetic study. Subjects were dosed with either three 1.8% systems or one, two, or three 5.4% systems in each period. Blood was collected for up to 48 h, and plasma lidocaine levels were measured with a validated HPLC method. In parallel, human and mouse skin models characterized the in vitro skin permeation profile. The pharmacokinetic profile was linear between one, two, and three lidocaine 5.4% applications. Application of three lidocaine 1.8% systems (108 mg lidocaine) was bioequivalent to one lidocaine 5.4% system (108 mg lidocaine). Both topical systems remained well adhered to the skin and irritation was mild. The 5.4% system had approximately threefold higher skin permeability than the 1.8% system in the mouse and human skin models. The results indicate increasing the drug load by three times results in triple the drug delivery both in vivo and in vitro. The relationship between the in vitro permeation and in vivo absorption correlates and is nonlinear

    Development of a neonatal adverse event severity scale through a Delphi consensus approach

    No full text
    BACKGROUND: Assessment of the seriousness, expectedness and causality are necessary for any adverse event (AE) in a clinical trial. In addition, assessing AE severity helps determine the importance of the AE in the clinical setting. Standardisation of AE severity criteria could make safety information more reliable and comparable across trials. Although standardised AE severity scales have been developed in other research fields, they are not suitable for use in neonates. The development of an AE severity scale to facilitate the conduct and interpretation of neonatal clinical trials is therefore urgently needed. METHODS: A stepwise consensus process was undertaken within the International Neonatal Consortium (INC) with input from all relevant stakeholders. The consensus process included several rounds of surveys (based on a Delphi approach), face-to-face meetings and a pilot validation. RESULTS: Neonatal AE severity was classified by five grades (mild, moderate, severe, life threatening or death). AE severity in neonates was defined by the effect of the AE on age appropriate behaviour, basal physiological functions and care changes in response to the AE. Pilot validation of the generic criteria revealed κ=0.23 and guided further refinement. This generic scale was applied to 35 typical and common neonatal AEs resulting in the INC neonatal AE severity scale (NAESS) V.1.0, which is now publicly available. DISCUSSION: The INC NAESS is an ongoing effort that will be continuously updated. Future perspectives include further validation and the development of a training module for users.status: publishe

    Development of a neonatal adverse event severity scale through a Delphi consensus approach

    No full text
    corecore