433 research outputs found

    Gamma rhythms and beta rhythms have different synchronization properties

    Get PDF
    Experimental and modeling efforts suggest that rhythms in the CA1 region of the hippocampus that are in the beta range (12-29 Hz) have a different dynamical structure than that of gamma (30-70 Hz). We use a simplified model to show that the different rhythms employ different dynamical mechanisms to synchronize, based on different ionic currents. The beta frequency is able to synchronize over long conduction delays (corresponding to signals traveling a significant distance in the brain) that apparently cannot be tolerated by gamma rhythms. The synchronization properties are consistent with data suggesting that gamma rhythms are used for relatively local computations whereas beta rhythms are used for higher level interactions involving more distant structures

    Bifurcations and trajectories joining critical points

    Get PDF

    Mathematical Analysis and Simulations of the Neural Circuit for Locomotion in Lamprey

    Full text link
    We analyze the dynamics of the neural circuit of the lamprey central pattern generator (CPG). This analysis provides insights into how neural interactions form oscillators and enable spontaneous oscillations in a network of damped oscillators, which were not apparent in previous simulations or abstract phase oscillator models. We also show how the different behaviour regimes (characterized by phase and amplitude relationships between oscillators) of forward/backward swimming, and turning, can be controlled using the neural connection strengths and external inputs.Comment: 4 pages, accepted for publication in Physical Review Letter

    Synchronization and oscillatory dynamics in heterogeneous mutually inhibited neurons

    Full text link
    We study some mechanisms responsible for synchronous oscillations and loss of synchrony at physiologically relevant frequencies (10-200 Hz) in a network of heterogeneous inhibitory neurons. We focus on the factors that determine the level of synchrony and frequency of the network response, as well as the effects of mild heterogeneity on network dynamics. With mild heterogeneity, synchrony is never perfect and is relatively fragile. In addition, the effects of inhibition are more complex in mildly heterogeneous networks than in homogeneous ones. In the former, synchrony is broken in two distinct ways, depending on the ratio of the synaptic decay time to the period of repetitive action potentials (Ï„s/T\tau_s/T), where TT can be determined either from the network or from a single, self-inhibiting neuron. With Ï„s/T>2\tau_s/T > 2, corresponding to large applied current, small synaptic strength or large synaptic decay time, the effects of inhibition are largely tonic and heterogeneous neurons spike relatively independently. With Ï„s/T<1\tau_s/T < 1, synchrony breaks when faster cells begin to suppress their less excitable neighbors; cells that fire remain nearly synchronous. We show numerically that the behavior of mildly heterogeneous networks can be related to the behavior of single, self-inhibiting cells, which can be studied analytically.Comment: 17 pages, 6 figures, Kluwer.sty. Journal of Compuational Neuroscience (in press). Originally submitted to the neuro-sys archive which was never publicly announced (was 9802001

    Modeling rhythmic patterns in the hippocampus

    Full text link
    We investigate different dynamical regimes of neuronal network in the CA3 area of the hippocampus. The proposed neuronal circuit includes two fast- and two slowly-spiking cells which are interconnected by means of dynamical synapses. On the individual level, each neuron is modeled by FitzHugh-Nagumo equations. Three basic rhythmic patterns are observed: gamma-rhythm in which the fast neurons are uniformly spiking, theta-rhythm in which the individual spikes are separated by quiet epochs, and theta/gamma rhythm with repeated patches of spikes. We analyze the influence of asymmetry of synaptic strengths on the synchronization in the network and demonstrate that strong asymmetry reduces the variety of available dynamical states. The model network exhibits multistability; this results in occurrence of hysteresis in dependence on the conductances of individual connections. We show that switching between different rhythmic patterns in the network depends on the degree of synchronization between the slow cells.Comment: 10 pages, 9 figure

    Synchronization and Redundancy: Implications for Robustness of Neural Learning and Decision Making

    Full text link
    Learning and decision making in the brain are key processes critical to survival, and yet are processes implemented by non-ideal biological building blocks which can impose significant error. We explore quantitatively how the brain might cope with this inherent source of error by taking advantage of two ubiquitous mechanisms, redundancy and synchronization. In particular we consider a neural process whose goal is to learn a decision function by implementing a nonlinear gradient dynamics. The dynamics, however, are assumed to be corrupted by perturbations modeling the error which might be incurred due to limitations of the biology, intrinsic neuronal noise, and imperfect measurements. We show that error, and the associated uncertainty surrounding a learned solution, can be controlled in large part by trading off synchronization strength among multiple redundant neural systems against the noise amplitude. The impact of the coupling between such redundant systems is quantified by the spectrum of the network Laplacian, and we discuss the role of network topology in synchronization and in reducing the effect of noise. A range of situations in which the mechanisms we model arise in brain science are discussed, and we draw attention to experimental evidence suggesting that cortical circuits capable of implementing the computations of interest here can be found on several scales. Finally, simulations comparing theoretical bounds to the relevant empirical quantities show that the theoretical estimates we derive can be tight.Comment: Preprint, accepted for publication in Neural Computatio

    Spontaneous periodic travelling waves in oscillatory systems with cross-diffusion

    Get PDF
    We identify a new type of pattern formation in spatially distributed active systems. We simulate one-dimensional two-component systems with predator-prey local interaction and pursuit-evasion taxis between the components. In a sufficiently large domain, spatially uniform oscillations in such systems are unstable with respect to small perturbations. This instability, through a transient regime appearing as spontanous focal sources, leads to establishment of periodic traveling waves. The traveling waves regime is established even if boundary conditions do not favor such solutions. The stable wavelength are within a range bounded both from above and from below, and this range does not coincide with instability bands of the spatially uniform oscillations.Comment: 7 pages, 4 figures, as accepted to Phys Rev E 2009/10/2

    Stability Analysis of Asynchronous States in Neuronal Networks with Conductance-Based Inhibition

    Get PDF
    Oscillations in networks of inhibitory interneurons have been reported at various sites of the brain and are thought to play a fundamental role in neuronal processing. This Letter provides a self-contained analytical framework that allows numerically efficient calculations of the population activity of a network of conductance-based integrate-and-fire neurons that are coupled through inhibitory synapses. Based on a normalization equation this Letter introduces a novel stability criterion for a network state of asynchronous activity and discusses its perturbations. The analysis shows that, although often neglected, the reversal potential of synaptic inhibition has a strong influence on the stability as well as the frequency of network oscillations
    • …
    corecore