433 research outputs found
Gamma rhythms and beta rhythms have different synchronization properties
Experimental and modeling efforts suggest that rhythms in the CA1 region of the hippocampus that are in the beta range (12-29 Hz) have a different dynamical structure than that of gamma (30-70 Hz). We use a simplified model to show that the different rhythms employ different dynamical mechanisms to synchronize, based on different ionic currents. The beta frequency is able to synchronize over long conduction delays (corresponding to signals traveling a significant distance in the brain) that apparently cannot be tolerated by gamma rhythms. The synchronization properties are consistent with data suggesting that gamma rhythms are used for relatively local computations whereas beta rhythms are used for higher level interactions involving more distant structures
Mathematical Analysis and Simulations of the Neural Circuit for Locomotion in Lamprey
We analyze the dynamics of the neural circuit of the lamprey central pattern
generator (CPG). This analysis provides insights into how neural interactions
form oscillators and enable spontaneous oscillations in a network of damped
oscillators, which were not apparent in previous simulations or abstract phase
oscillator models. We also show how the different behaviour regimes
(characterized by phase and amplitude relationships between oscillators) of
forward/backward swimming, and turning, can be controlled using the neural
connection strengths and external inputs.Comment: 4 pages, accepted for publication in Physical Review Letter
Synchronization and oscillatory dynamics in heterogeneous mutually inhibited neurons
We study some mechanisms responsible for synchronous oscillations and loss of
synchrony at physiologically relevant frequencies (10-200 Hz) in a network of
heterogeneous inhibitory neurons. We focus on the factors that determine the
level of synchrony and frequency of the network response, as well as the
effects of mild heterogeneity on network dynamics. With mild heterogeneity,
synchrony is never perfect and is relatively fragile. In addition, the effects
of inhibition are more complex in mildly heterogeneous networks than in
homogeneous ones. In the former, synchrony is broken in two distinct ways,
depending on the ratio of the synaptic decay time to the period of repetitive
action potentials (), where can be determined either from the
network or from a single, self-inhibiting neuron. With ,
corresponding to large applied current, small synaptic strength or large
synaptic decay time, the effects of inhibition are largely tonic and
heterogeneous neurons spike relatively independently. With ,
synchrony breaks when faster cells begin to suppress their less excitable
neighbors; cells that fire remain nearly synchronous. We show numerically that
the behavior of mildly heterogeneous networks can be related to the behavior of
single, self-inhibiting cells, which can be studied analytically.Comment: 17 pages, 6 figures, Kluwer.sty. Journal of Compuational Neuroscience
(in press). Originally submitted to the neuro-sys archive which was never
publicly announced (was 9802001
Modeling rhythmic patterns in the hippocampus
We investigate different dynamical regimes of neuronal network in the CA3
area of the hippocampus. The proposed neuronal circuit includes two fast- and
two slowly-spiking cells which are interconnected by means of dynamical
synapses. On the individual level, each neuron is modeled by FitzHugh-Nagumo
equations. Three basic rhythmic patterns are observed: gamma-rhythm in which
the fast neurons are uniformly spiking, theta-rhythm in which the individual
spikes are separated by quiet epochs, and theta/gamma rhythm with repeated
patches of spikes. We analyze the influence of asymmetry of synaptic strengths
on the synchronization in the network and demonstrate that strong asymmetry
reduces the variety of available dynamical states. The model network exhibits
multistability; this results in occurrence of hysteresis in dependence on the
conductances of individual connections. We show that switching between
different rhythmic patterns in the network depends on the degree of
synchronization between the slow cells.Comment: 10 pages, 9 figure
Synchronization and Redundancy: Implications for Robustness of Neural Learning and Decision Making
Learning and decision making in the brain are key processes critical to
survival, and yet are processes implemented by non-ideal biological building
blocks which can impose significant error. We explore quantitatively how the
brain might cope with this inherent source of error by taking advantage of two
ubiquitous mechanisms, redundancy and synchronization. In particular we
consider a neural process whose goal is to learn a decision function by
implementing a nonlinear gradient dynamics. The dynamics, however, are assumed
to be corrupted by perturbations modeling the error which might be incurred due
to limitations of the biology, intrinsic neuronal noise, and imperfect
measurements. We show that error, and the associated uncertainty surrounding a
learned solution, can be controlled in large part by trading off
synchronization strength among multiple redundant neural systems against the
noise amplitude. The impact of the coupling between such redundant systems is
quantified by the spectrum of the network Laplacian, and we discuss the role of
network topology in synchronization and in reducing the effect of noise. A
range of situations in which the mechanisms we model arise in brain science are
discussed, and we draw attention to experimental evidence suggesting that
cortical circuits capable of implementing the computations of interest here can
be found on several scales. Finally, simulations comparing theoretical bounds
to the relevant empirical quantities show that the theoretical estimates we
derive can be tight.Comment: Preprint, accepted for publication in Neural Computatio
Spontaneous periodic travelling waves in oscillatory systems with cross-diffusion
We identify a new type of pattern formation in spatially distributed active
systems. We simulate one-dimensional two-component systems with predator-prey
local interaction and pursuit-evasion taxis between the components. In a
sufficiently large domain, spatially uniform oscillations in such systems are
unstable with respect to small perturbations. This instability, through a
transient regime appearing as spontanous focal sources, leads to establishment
of periodic traveling waves. The traveling waves regime is established even if
boundary conditions do not favor such solutions. The stable wavelength are
within a range bounded both from above and from below, and this range does not
coincide with instability bands of the spatially uniform oscillations.Comment: 7 pages, 4 figures, as accepted to Phys Rev E 2009/10/2
Stability Analysis of Asynchronous States in Neuronal Networks with Conductance-Based Inhibition
Oscillations in networks of inhibitory interneurons have been reported at various sites of the brain and are thought to play a fundamental role in neuronal processing. This Letter provides a self-contained analytical framework that allows numerically efficient calculations of the population activity of a network of conductance-based integrate-and-fire neurons that are coupled through inhibitory synapses. Based on a normalization equation this Letter introduces a novel stability criterion for a network state of asynchronous activity and discusses its perturbations. The analysis shows that, although often neglected, the reversal potential of synaptic inhibition has a strong influence on the stability as well as the frequency of network oscillations
- …