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Oscillations in networks of inhibitory interneurons have been reported at various sites of the brain
and are thought to play a fundamental role in neuronal processing. This Letter provides a self-contained
analytical framework that allows numerically efficient calculations of the population activity of a
network of conductance-based integrate-and-fire neurons that are coupled through inhibitory synapses.
Based on a normalization equation this Letter introduces a novel stability criterion for a network state
of asynchronous activity and discusses its perturbations. The analysis shows that, although often
neglected, the reversal potential of synaptic inhibition has a strong influence on the stability as well as
the frequency of network oscillations.
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Mutual synchronization is found in a large variety of
populations of biological oscillators [1]. Famous ex-
amples are the synchronous flashing of fireflies and crick-
ets that chirp in unison. On the cellular level we know
about synchronization of cardiac and circadian pace-
makers as well as collective firing in neuronal networks.
It is thus not surprising that, although the basics of
synchronization of pulse-coupled oscillators can be con-
sidered as understood (cf. [2]), a more detailed evaluation
of a specific system heavily depends on the peculiarities
of its dynamics as well as the biophysical mechanism of
interaction.

Theories of brain function attribute many fundamental
roles to the (de)synchronization of a population of spiking
neurons and suffer, in particular, from the gap between a
wealth of experimental data and the unfeasiblity of an
analytical treatment of collective phenomena in networks
of elaborately modeled neurons. From a present perspec-
tive, one can distinguish two major classes of network
models, the first of which is mainly dedicated to computer
simulations of networks of realistically modeled neurons
(cf. [3]), whereas the second one aims at an analytical
understanding of network dynamics based on simplified
neuron models [4–12]. The approach pursued in this
Letter is based on the stochastic dynamics of a macro-
scopic activity variable and has the potential to combine
advantages of both approaches mentioned above in that it
can analytically infer the effects of complex single cell
properties on network behavior. The dynamics has first
been introduced by Gerstner [4] and, although mathe-
matically equivalent, the present advancement extends its
applicability to conductance-based integrate-and-fire
neurons and hence provides an analytical understanding
of the effect of changes [13] of synaptic reversal poten-
tials on network activity. Reversal potentials are crucial
especially for inhibitory-coupled networks.

A further focus is put on alternative numerical and
analytical methods that permit efficient use of the activ-
0031-9007=04=93(20)=208104(4)$22.50 
ity dynamics that is defined through an integral equation.
These methods may extend the applicability of the sto-
chastic network theory also to pulse-coupled systems
beyond neuroscience.

The primary assumption of the theory is that one
considers a homogeneously interconnected network of
identical cells with each single neuron receiving identical
external input. Any particular neuron is either able to fire
or is in a refractory state where it is unable to fire. After
having fired a spike, a neuron becomes refractory for a
period of �ref � 0.

In the present description, network dynamics is derived
from the so-called ‘‘survivor function’’ S�t; t0� [4,9] that
denotes the conditional probability that a neuron does not
fire a spike in the interval �t0; t� given its last spike
occurred at t0. The transition of cells into the refractory
state is described by the firing probability density
pF�t; t0�, which is defined as the relative decay of survi-
vors, pF�t; t0� � �S�1�t; t0� dS�t;t

0�
dt . Since S�t; t� � 1, the

dynamics of S can be specified in closed form,
S�t; t0� � exp��

R
t
t0 dspF�s; t

0��.
The population activity A�t� of a network is defined to

be the number of firing neurons per time. For a network of
N neurons, taking the limit N ! 1, A�t�=N is the proba-
bility density of a cell to fire at time t. Using Bayes’s
theorem one henceforth constructs the compound proba-
bility density ��t; t0� � A�t0�S�t; t0� that a cell has fired its
last spike at time t0 < t. Being a compound probability
density, � is normalized under the proposition that every
cell in the network has at least fired once at some time
t0 >�1, which yields the normalization condition

N � N �A��t� �
Z t

�1
dt0��t; t0�: (1)

It is remarkable that the normalization condition (1)
turns out to be sufficient to fully assess all dynamical
aspects of the network activity. Nevertheless, for numeri-
cal reasons, we differentiate (1) with respect to t (see [4])
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and also obtain a common integral-equation dynamics
for the network activity

A�t� �
Z t

�1
dt0��t; t0�pF�t; t0�: (2)
For low activity, and hence low pF, numerical treatment
of Eq. (2) causes normalization problems [9]. Here, this
difficulty is overcome by a generalization of an idea from
Eggert and van Hemmen [9]. One therefore assumes that
there is a neuronal memory time �mem, where p1

F �t� �
pF�t; t0� is independent of t0 if t� t0 > �mem; i.e., the cells
‘‘forget’’ about the last spike after a period of at most
�mem. Hence, Eq. (2) is approximated by A�t� �R
t
t��mem

dt0��t; t0�pF�t; t0�  p1
F �t�

Rt��mem
�1 dt0��t; t0�. The

second integral on the right-hand side can be ex-
pressed by means of the normalization condition,Rt��mem
�1 dt0��t; t0� � N �

R
t
t��mem

dt0��t; t0�. As compared
to Eq. (2) now the integral becomes finite,

A�t� �Np1
F �t�

Z t

t��mem

dt0��t; t0��pF�t; t0� �p1
F �t��; (3)
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FIG. 1. Simulation of cellular network vs pool theory.
Comparison of the network activity obtained from a simulation
(diamonds) of 8000 fully interconnected neurons and theory
[solid lines; Eq. (3)] for an external step current of amplitude
I=�C�� � 2:6 kHz at t � 0 ms. For a constant value NE �g=C �
�0:4� kHz of the stationary inhibitory current, a reduction of
the inhibitory reversal potential E yields a transition from a
stable oscillation (top trace) to a stable asynchronous state
(traces two and three) and back again to a stable oscillation
(bottom).
with an integration interval of length �mem. Equation (3)
is a major improvement to (2), since it permits robust
straightforward numerics, also for paradigms with low
activities. Simulations of large networks of neurons are
thus equivalent to the integration of all local firing prob-
abilities pF�t; t

0� within a memory interval t0 2
�t; t� �mem� if one is solely interested in the dynamics
of A�t�.

In order to investigate properties of inhibitory-coupled
interneuronal assemblies, an appropriate cellular dynam-
ics has to be specified. As elsewhere [4], a firing proba-
bility pF�t; t0� � 	�h�t; t0�� being an exponential function
(‘‘gain function’’) 	�h� � ��1

F exp���h� ��� of the mo-
mentary membrane potential h�t; t0� is chosen, where �
denotes the threshold, � quantifies the noise level, and
�F � 1 ms is fixed and accounts for the right units.

The simplest model that decently approximates inhibi-
tory synaptic interactions is a conductance-based
integrate-and-fire dynamics, which serves as the model
of choice for the rest of this Letter. The membrane time
constant �M, the synaptic reversal potential E, and the
capacitance C are constants, whereas the external current
I is a time-dependent variable. So is the synaptic con-
ductivity g that represents the input that is due to recur-
rent architecture of the network. All voltage variables are
measured in units of the threshold �; currents are mea-
sured in units of capacitance times threshold per time. For
times t � t0  �ref , and given the neuron has fired previ-
ously at time t0, the solution to a conductance-based leaky
integrator C _v � �vC=�M  g�E� v�  I is
208104-2
v�t; t0� �
Z t

t0�ref

ds
C

�I�s�  g�s; t0�E�

� exp
�
�

Z t

s
ds0���1

M  C�1g�s0; t0��
�
: (4)

Then, the membrane potential h�t; t0� � v�t; t0�  href�t�
t0 � �ref� is a combination of Eq. (4) and a refractory
kernel href that models a phenomenon generally called
after hyperpolarization, i.e., a negative, mostly potas-
sium mediated potential that remains for a few milli-
seconds after the absolute refractory period �ref . For
t0 < t < t0  �ref one formally writes h�t; t0� � �1,
which indicates vanishing firing probability pF�t; t

0� �
0. The integral kernel in Eq. (4) consists of a membrane
part exp���t� s�=�M� for t � s and a synaptic part
exp��

R
t
s ds

0C�1g�s0; t0��, the latter reflecting the
conductance-based integration of spikes. The conductiv-
ity g�t; t0� � �g

R
t
�1 dsA�s��

syn�t� s���s� t0 � �ref� is
assumed to be a linear mapping of the network activity
A. Figure 1 demonstrates the quality and numerical ro-
bustness of the mean field approximation (3). For parame-
ter values and model details, see [14].

Most analytical studies of oscillations in large-scale
neuronal networks have been performed with integrate-
and-fire neurons [7,11]. Since the reversal potential E for
excitatory synapses resides at a clearly more depolarized
level than the subthreshold dynamics, its nonlinear ef-
208104-2
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FIG. 2. Complex roots of the linear normalization kernel
L��� determine stability and oscillation frequency.
Parameters are those of Fig. 1. For E=� � �0:04 there is a
single root with a negative real part  . Its imaginary part
(122 Hz) roughly corresponds to the frequency of stable oscil-
lation. In the case of E=� � �0:057 (diamonds) there is a root
with a positive but very small real part at an oscillation
frequency of 125 Hz. At E=� � �0:067 (circles) the real part
of the root at about 125 Hz increases, whereas the real parts of
the roots at lower frequencies decrease, which yields a mixture
of different oscillatory components; see Fig. 1 (third trace). A
further decrease to E=� � �0:24 while keeping �gE constant,
again yields a root with a negative real part and therefore an
unstable asynchronous state. Roots with  > 0:15 kHz are not
shown.
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fects on synaptic summation in purely excitatory coupled
networks is thus generally omitted [4]. In networks with
inhibitory connections, the reversal potential is closer to
the resting potential and, as shown by Fig. 1, the stability
of oscillations depends upon the value of the reversal
potential, i.e., whether the synaptic current is conduc-
tance based or not. The critical influence of E upon
both stability and frequency of network oscillations is
now going to be further elaborated by means of a linear
stability criterion that, in contrast to previous theories [4],
is directly inferred from the normalization condition (1).
As a result, mathematics is more concise.

Asynchronous states of the network are defined
through A�t� � A0 � const: They can be obtained [4]
through solving Eq. (1); i.e., they are the roots of the
implicit equation N � A0

R
t
�1 dt

0 exp��
R
t
t0 dspF�s; t

0��,
where pF is to be evaluated for constant activity A0.
Now it is argued that Eq. (1) can also be used for deter-
mining the stability of the asynchronous state. For t > 0
one therefore defines ��t� � A�t� � A0 to be the response
to a perturbation at t � 0. The linearization of Eq. (1)
then reads N �A0  "�� � N �A0�  " d

d"N �A0 

"��"�0. Because of N � N �A0  "�� � N �A0�, one
finds

0 �
d
d"

N �A0  "��"�0�t�

�
Z 1

0
dt̂ ��t̂�

�N �A��t�
�A�t̂�

��������A�A0

: (5)

Equation (5) implies a condition for the possible pertur-
bation responses�. The asynchronous state A0 is stable if,
for t! 1, all allowed perturbation responses � converge
to zero. Combining (1) and (5) with � � AS, we have

0 �
Z 1

0
dt̂ ��t̂�

�
��t� t̂�S�t; t̂� � A0

Z t

�1
dt0S�t; t0�

�
Z t

t0
ds
�pF�s; t0�
�A�t̂�

�
: (6)

Because of constant synaptic input an asynchronous state
is stationary. Thus, Eq. (6) becomes a convolution 0 �R
t
0 dt̂��t̂���t� t̂� of the perturbation response � with a

linear normalization kernel �. As a proof and in order to
specify �, one considers that stationarity means
pF�t; t0� � pF�t� t0; 0� or S�t; t0� � S�t� t0; 0�, respec-
tively. Moreover, taking into account causality [��t�
t̂�] and one-spike memory [��t̂� t0�] one introduces a
susceptibility �, such that �pF�t;t0�

�A�t̂� � ��t� t̂���t̂�
t0���t� t0���t� t̂; t� t0�. After some basic calculus one
obtains a linear kernel ��t� � ��t�S�t; 0� � A0��t�,
where ��t� �

R
1
t dsS�s; 0�

R
t
0 ds

0��t� s0; s� s0�. The
Laplace-transformed version of Eq. (6) therefore reads
0 � L����z�L����z�, where L�f��z� :�

R
1
0 dtf�t��

exp�zt�. As a consequence, nonvanishing perturbation
responses L����z� are forbidden, except for L����z� �
0. In other words, the perturbation response is a linear
208104-3
combination of exponential functions exp��zt�, where
z �   i! is a complex root of L���. Moreover, stabil-
ity of the asynchronous state means that all roots have a
positive real part, i.e.,  > 0. Then, the imaginary parts
! of the roots determine the oscillation frequency of � if
j j is sufficiently small, e.g., j j< j!j=�2#�.

In the case of the conductance-based integrate-and-fire
model with a noisy threshold, we find the susceptibility to
be ��t; t x� � 0 for x < �ref or t < 0, whereas for x �
�ref and t > 0 Eq. (4) yields ��t; t x� � �	�h�t
x; 0����t; t x�, where

��t; t x� �
Z t

�ref
ds
�h�t x; 0�
�g�s; 0�

�g�s; 0�
�A�x�

� �g
Z tx

x
ds
e�x�s�=�synFA0

�t x�

e�tx�s�=�MFA0
�s�

� �E� �h� href��s; 0�� (7)

and FA0
�s� � exp�A0

�g�syn
C e��s��ref �=�syn�. The roots of L���

for conductance-based integrate-and-fire neurons are ob-
tained numerically and are plotted in Fig. 2 for the four
parameter regimes of Fig. 1. The imaginary part of the
root approximates the oscillation frequency of the per-
turbation response. Positive but small real parts  may
suffice to maintain long-lasting oscillatory perturbation
responses from noisy input; see Fig. 2 (diamonds).

At this point, it is a straightforward exercise to plot
stability regions of asynchronous states. It is done so in
Fig. 3 for a variation of the external current I and the
synaptic reversal potential E, while keeping �gE constant.
One therefore defines a principal frequency f0 to be
1=�2#� times the imaginary part of the complex root
208104-3
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FIG. 3 (color). Stability and time course of the relaxation to
asynchronous states. Regions of unstable asynchronous state
are plotted black, stability regions are color-coded. Regions of
low oscillation index & (see the text) are depicted through
grayish colors; high oscillation indices are marked with bright
colors. Insets (a)–(f) are obtained by numerical integration of
Eq. (3). For high values of jEj oscillations are in a ‘‘current-
based’’ limit and show only little dependence on E. Note that
the E axis has a logarithmic scale. The vertical solid line
denotes the value I=�C�� � 2:6 kHz, the horizontal line E=� �
�0:057.
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with the smallest real part  and introduces an oscillation
index &�A0=Rj

PR
n�1 exp��� n i!n�=f0�j that mea-

sures the degree of monoperiodicity and the duration of
the perturbation responses, given the asynchronous state
is stable and L��� has R roots  n  i!n.

For a constant current I=�C�� � 2:6 kHz, the theory
predicts a switch from an unstable asynchronous state to a
stable one and back by continuously decreasing the re-
versal potential E. For small values of jEj, minuscule
changes have dramatic effects on stability. Low values
of the oscillation index & (grayish colors) moreover in-
dicate that oscillatory perturbation responses either de-
cay rapidly [Fig. 3(a)] or consist of two interfering
frequencies [Fig. 3(e)]. Abrupt transitions of principal
frequencies f0 (colors) indicate that two roots have a
similar real part  ; cf. Figs. 2 (circles) and 3(e).

It is well-known that the value of the inhibitory rever-
sal potential is highly dependent on age, synaptic loca-
tion, and even activity [13]. From this perspective, the
present results raise important questions on how these
changes influence stability and frequency of network
oscillations, especially during maturation.

The present theory is restricted by the assumption of
homogeneity of both the network topology and the input.
Since it is known [15] that heterogeneities easily disturb
synchronization, a thorough adaption of the reversal po-
tential can be even more crucial. The results obtained for
the homogeneous case can then serve as an estimate of
208104-4
network behavior at the edge of (de)synchronization.
More generally, the theory provides a useful tool for
investigating the effect of cellular parameters on network
dynamics. This is possible also for systems with
arbitrary-dimensional cellular dynamics and probably
also for experimentally obtained survivor functions
S�t; t0�.
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