171 research outputs found

    The Optical Transient Search in the Bamberg Southern Sky Survey: Preliminary Results

    Get PDF
    A large fraction of gamma-ray bursts temporarily emit optical light, i.e. optical afterglows and optical transients. So far, optical transients have only been detected after related gamma-ray satellite detection. However, taking into account their optical magnitudes at maximum light, these objects should be detectable in various historical and recent optical surveys, including the photographic sky patrol. Here we report on an extended study based on blink-comparison of 5004 Bamberg Observatory Southern Sky Patrol Plates performed within a student high school project (Jugend Forscht)

    The Dynamical Emergence of Biology From Physics: Branching Causation via Biomolecules

    Get PDF
    Biology differs fundamentally from the physics that underlies it. This paper1 proposes that the essential difference is that while physics at its fundamental level is Hamiltonian, in biology, once life has come into existence, causation of a contextual branching nature occurs at every level of the hierarchy of emergence at each time. The key feature allowing this to happen is the way biomolecules such as voltage-gated ion channels can act to enable branching logic to arise from the underlying physics, despite that physics per se being of a deterministic nature. Much randomness occurs at the molecular level, which enables higher level functions to select lower level outcomes according to higher level needs. Intelligent causation occurs when organisms engage in deduction, enabling prediction and planning. This is possible because ion channels enable action potentials to propagate in axons. The further key feature is that such branching biological behavior acts down to cause the underlying physical interactions to also exhibit a contextual branching behavior

    Small firms and patenting revisited

    Get PDF
    In order to observe a patent application at the firm level two conditions need to be met: new products need to be of patentable quality, which depends both on the degree of novelty of innovations and on the total number (portfolio) of innovations; and the benefits of patents need to be higher than the costs of owning them. Analyzing the patent propensity of small and large UK firms using a novel innovation-level survey (the SIPU survey) linked to Community Innovation Survey data we find that when we consider the whole innovation portfolio smaller firms do patent less than larger firms. However, using data on individual innovations, we find that smaller firms are no less likely to patent any specific innovation than larger firms. We argue that size differences in the probability to patent relate primarily to the ‘portfolio effect’, i.e. larger firms generate more innovations than smaller firms and therefore are more likely to create one or more which are patentable. As for the decision to patent a patentable innovation, we find that cost barriers, more than issues of innovation quality or enforceability, deter small firms from patenting specific innovations. Measures to address the costs of patenting for smaller firms – perhaps by considering patents as eligible costs for R&D tax credits – and/or subsidizing SMEs’ participation in IP litigation schemes may both encourage patent use by smaller firms

    Clinical and laboratory predictors of death in African children with features of severe malaria: a systematic review and meta-analysis.

    Get PDF
    The criteria for defining severe malaria have evolved over the last 20 years. We aimed to assess the strength of association of death with features currently characterizing severe malaria through a systematic review and meta-analysis. Electronic databases (Medline, Embase, Cochrane Database of Systematic Reviews, Thomson Reuters Web of Knowledge) were searched to identify publications including African children with severe malaria. PRISMA guidelines were followed. Selection was based on design (epidemiological, clinical and treatment studies), setting (Africa), participants (children < 15 years old with severe malaria), outcome (survival/death rate), and prognostic indicators (clinical and laboratory features). Quality assessment was performed following the criteria of the 2011 Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). Odds ratios (ORs) were calculated for each study and prognostic indicator, and, when a test was assessed in at least two studies, pooled estimates of ORs were computed using fixed- or random-effects meta-analysis. A total of 601 articles were identified and screened and 30 publications were retained. Features with the highest pooled ORs were renal failure (5.96, 95% CI 2.93-12.11), coma score (4.83, 95% CI 3.11-7.5), hypoglycemia (4.59, 95% CI 2.68-7.89), shock (4.31, 95% CI 2.15-8.64), and deep breathing (3.8, 95% CI 3.29-4.39). Only half of the criteria had an OR > 2. Features with the lowest pooled ORs were impaired consciousness (0.58, 95% CI 0.25-1.37), severe anemia (0.76, 95% CI 0.5- 1.13), and prostration (1.12, 95% CI 0.45-2.82). The findings of this meta-analysis show that the strength of association between the criteria defining severe malaria and death is quite variable for each clinical and/or laboratory feature (OR ranging from 0.58 to 5.96). This ranking allowed the identification of features weakly associated with death, such as impaired consciousness and prostration, which could assist to improve case definition, and thus optimize antimalarial treatment

    Year in review in Intensive Care Medicine, 2008: II. Experimental, acute respiratory failure and ARDS, mechanical ventilation and endotracheal intubation

    Get PDF
    SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated?

    Get PDF
    An increasing number of studies using real-time fMRI neurofeedback have demonstrated that successful regulation of neural activity is possible in various brain regions. Since these studies focused on the regulated region(s), little is known about the target-independent mechanisms associated with neurofeedback-guided control of brain activation, i.e. the regulating network. While the specificity of the activation during self-regulation is an important factor, no study has effectively determined the network involved in self-regulation in general. In an effort to detect regions that are responsible for the act of brain regulation, we performed a post-hoc analysis of data involving different target regions based on studies from different research groups. We included twelve suitable studies that examined nine different target regions amounting to a total of 175 subjects and 899 neurofeedback runs. Data analysis included a standard first- (single subject, extracting main paradigm) and second-level (single subject, all runs) general linear model (GLM) analysis of all participants taking into account the individual timing. Subsequently, at the third level, a random effects model GLM included all subjects of all studies, resulting in an overall mixed effects model. Since four of the twelve studies had a reduced field of view (FoV), we repeated the same analysis in a subsample of eight studies that had a well-overlapping FoV to obtain a more global picture of self-regulation. The GLM analysis revealed that the anterior insula as well as the basal ganglia, notably the striatum, were consistently active during the regulation of brain activation across the studies. The anterior insula has been implicated in interoceptive awareness of the body and cognitive control. Basal ganglia are involved in procedural learning, visuomotor integration and other higher cognitive processes including motivation. The larger FoV analysis yielded additional activations in the anterior cingulate cortex, the dorsolateral and ventrolateral prefrontal cortex, the temporo-parietal area and the visual association areas including the temporo-occipital junction. In conclusion, we demonstrate that several key regions, such as the anterior insula and the basal ganglia, are consistently activated during self-regulation in real-time fMRI neurofeedback independent of the targeted region-of-interest. Our results imply that if the real-time fMRI neurofeedback studies target regions of this regulation network, such as the anterior insula, care should be given whether activation changes are related to successful regulation, or related to the regulation process per se. Furthermore, future research is needed to determine how activation within this regulation network is related to neurofeedback success
    corecore