128 research outputs found

    Frame-dragging effects on magnetic fields near a rotating black hole

    Full text link
    We discuss the role of general relativity frame dragging acting on magnetic field lines near a rotating (Kerr) black hole. Near ergosphere the magnetic structure becomes strongly influenced and magnetic null points can develop. We consider aligned magnetic fields as well as fields inclined with respect to the rotation axis, and the two cases are shown to behave in profoundly different ways. Further, we construct surfaces of equal values of local electric and magnetic intensities, which have not yet been discussed in the full generality of a boosted rotating black hole.Comment: to appear in the proceedings of "The Central Kiloparsec in Galactic Nuclei (AHAR 2011)", Journal of Physics: Conference Series (JPCS), IOP Publishin

    Predicting long-term recovery of a strongly acidified stream using MAGIC and climate models (Litavka, Czech Republic)

    Get PDF
    Two branches forming the headwaters of a stream in the Czech Republic were studied. Both streams have similar catchment characteristics and historical deposition; however one is rain-fed and strongly affected by acid atmospheric deposition, the other spring-fed and only moderately acidified. The MAGIC model was used to reconstruct past stream water and soil chemistry of the rain-fed branch, and predict future recovery up to 2050 under current proposed emissions levels. A future increase in air temperature calculated by a regional climate model was then used to derive climate-related scenarios to test possible factors affecting chemical recovery up to 2100. Macroinvertebrates were sampled from both branches, and differences in stream chemistry were reflected in the community structures. According to modelled forecasts, recovery of the rain-fed branch will be gradual and limited, and continued high levels of sulphate release from the soils will continue to dominate stream water chemistry, while scenarios related to a predicted increase in temperature will have little impact. The likelihood of colonization of species from the spring-fed branch was evaluated considering the predicted extent of chemical recovery. The results suggest that the possibility of colonization of species from the spring-fed branch to the rain-fed will be limited to only the acid-tolerant stonefly, caddisfly and dipteran taxa in the modelled period

    Regular and Chaotic Motion in General Relativity: The Case of a Massive Magnetic Dipole

    Full text link
    Circular motion of particles, dust grains and fluids in the vicinity of compact objects has been investigated as a model for accretion of gaseous and dusty environment. Here we further discuss, within the framework of general relativity, figures of equilibrium of matter under the influence of combined gravitational and large-scale magnetic fields, assuming that the accreted material acquires a small electric charge due to interplay of plasma processes and photoionization. In particular, we employ an exact solution describing the massive magnetic dipole and we identify the regions of stable motion. We also investigate situations when the particle dynamics exhibits the onset of chaos. In order to characterize the measure of chaoticness we employ techniques of Poincar\'e surfaces of section and of recurrence plots.Comment: 11 pages, 6 figures, published in the proceedings of the conference "Relativity and Gravitation: 100 Years after Einstein in Prague" (25. - 29. 6. 2012, Prague

    Changes in soil dissolved organic carbon affect reconstructed history and projected future trends in surface water acidification

    Get PDF
    Preindustrial (1850s) and future (2060) streamwater chemistry of an anthropogenically acidified small catchment was estimated using the MAGIC model for three different scenarios for dissolved organic carbon (DOC) concentrations and sources. The highest modeled pH = 5.7 for 1850s as well as for 2060 (pH = 4.4) was simulated given the assumption that streamwater DOC concentration was constant at the 1993 level. A scenario accounting for an increase of DOC as an inverse function of ionic strength (IS) of soilwater and streamwater resulted in much lower preindustrial (pH = 4.9) and future recovery to (pH = 4.1) if the stream riparian zone was assumed to be the only DOC source. If upland soilwater (where significant DOC increase was observed at −5 and −15 cm) was also included, DOC was partly neutralized within the soil and higher preindustrial pH = 5.3 and future pH = 4.2 were estimated. The observed DOC stream flux was 2–4 times higher than the potential carbon production of the riparian zone, implying that this is unlikely to be the sole DOC source. Modeling based on the assumption that stream DOC changes are solely attributable to changes in the riparian zone appears likely to underestimate preindustrial pH

    Transition from Regular to Chaotic Circulation in Magnetized Coronae near Compact Objects

    Full text link
    Accretion onto black holes and compact stars brings material in a zone of strong gravitational and electromagnetic fields. We study dynamical properties of motion of electrically charged particles forming a highly diluted medium (a corona) in the regime of strong gravity and large-scale (ordered) magnetic field. We start our work from a system that allows regular motion, then we focus on the onset of chaos. To this end, we investigate the case of a rotating black hole immersed in a weak, asymptotically uniform magnetic field. We also consider a magnetic star, approximated by the Schwarzschild metric and a test magnetic field of a rotating dipole. These are two model examples of systems permitting energetically bound, off-equatorial motion of matter confined to the halo lobes that encircle the central body. Our approach allows us to address the question of whether the spin parameter of the black hole plays any major role in determining the degree of the chaoticness. To characterize the motion, we construct the Recurrence Plots (RP) and we compare them with Poincar\'e surfaces of section. We describe the Recurrence Plots in terms of the Recurrence Quantification Analysis (RQA), which allows us to identify the transition between different dynamical regimes. We demonstrate that this new technique is able to detect the chaos onset very efficiently, and to provide its quantitative measure. The chaos typically occurs when the conserved energy is raised to a sufficiently high level that allows the particles to traverse the equatorial plane. We find that the role of the black-hole spin in setting the chaos is more complicated than initially thought.Comment: 21 pages, 20 figures, accepted to Ap

    Preliminary Evaluation of Tick Protein Extracts and Recombinant Ferritin 2 as Anti-tick Vaccines Targeting Ixodes ricinus in Cattle

    Get PDF
    Anti-tick vaccines have the potential to be an environmentally friendly and cost-effective option for tick control. In vaccine development, the identification of efficacious antigens forms the major bottleneck. In this study, the efficacy of immunization with recombinant ferritin 2 and native tick protein extracts (TPEs) against Ixodes ricinus infestations in calves was assessed in two immunization experiments. In the first experiment, each calf (n = 3) was immunized twice with recombinant ferritin 2 from I. ricinus (IrFER2), TPE consisting of soluble proteins from the internal organs of partially fed I. ricinus females, or adjuvant, respectively. In the second experiment, each calf (n = 4) was immunized with protein extracts from the midgut (ME) of partially fed females, the salivary glands (SGE) of partially fed females, a combination of ME and SGE, or adjuvant, respectively. Two weeks after the booster immunization, calves were challenged with 100 females and 200 nymphs. Blood was collected from the calves before the first and after the second immunization and fed to I. ricinus females and nymphs using an in vitro artificial tick feeding system. The two calves vaccinated with whole TPE and midgut extract (ME) showed hyperemia on tick bite sites 2 days post tick infestation and exudative blisters were observed in the ME-vaccinated animal, signs that were suggestive of a delayed type hypersensitivity (DTH) reaction. Significantly fewer ticks successfully fed on the three animals vaccinated with TPE, SGE, or ME. Adults fed on the TPE and ME vaccinated animals weighed significantly less. Tick feeding on the IrFER2 vaccinated calf was not impaired. The in vitro feeding of serum or fresh whole blood collected from the vaccinated animals did not significantly affect tick feeding success. Immunization with native I. ricinus TPEs thus conferred a strong immune response in calves and significantly reduced the feeding success of both nymphs and adults. In vitro feeding of serum or blood collected from vaccinated animals to ticks did not affect tick feeding, indicating that antibodies alone were not responsible for the observed vaccine immunity

    Magnetic layers and neutral points near rotating black hole

    Full text link
    Magnetic layers are narrow regions where the field direction changes sharply. They often occur in the association with neutral points of the magnetic field. We show that an organised field can produce these structures near a rotating black hole, and we identify them as potential sites of magnetic reconnection. To that end we study the field lines affected by the frame-dragging effect, twisting the magnetic structure and changing the position of neutral points. We consider oblique fields in vacuum. We also include the possibility of translational motion of the black hole which may be relevant when the black hole is ejected from the system. The model settings apply to the innermost regions around black holes with the ergosphere dominated by a super-equipartition magnetic field and loaded with a negligible gas content.Comment: 10 pages, 3 figures, Classical and Quantum Gravity accepte

    Mountain Lakes: Eyes on Global Environmental Change

    Get PDF
    Mountain lakes are often situated in protected natural areas, a feature that leads to their role as sentinels of global environmental change. Despite variations in latitude, mountain lakes share many features, including their location in catchments with steep topographic gradients, cold temperatures, high incident solar and ultraviolet radiation (UVR), and prolonged ice and snow cover. These characteristics, in turn, affect mountain lake ecosystem structure, diversity, and productivity. The lakes themselves are mostly small, and up until recently, have been characterized as oligotrophic. This paper provides a review and update of the growing body of research that shows that sediments in remote mountain lakes archive regional and global environmental changes, including those linked to climate change, altered biogeochemical cycles, and changes in dust composition and deposition, atmospheric fertilization, and biological manipulations. These archives provide an important record of global environmental change that pre-dates typical monitoring windows. Paleolimnological research at strategically selected lakes has increased our knowledge of interactions among multiple stressors and their synergistic effects on lake systems. Lakes from transectsacross steep climate (i.e., temperature and effective moisture) gradients in mountain regions show how environmental change alters lakes in close proximity, but at differing climate starting points. Such research in particular highlights the impacts of melting glaciers on mountain lakes. The addition of new proxies, including DNA-based techniques and advanced stable isotopic analyses, provides a gateway to addressing novel research questions about global environmental change. Recent advances in remote sensing and continuous, high-frequency, limnological measurements will improve spatial and temporal resolution and help to add records to spatial gaps including tropical and southern latitudes. Mountain lake records provide a unique opportunity for global scale assessments that provide knowledge necessary to protect the Earth system

    Assessing recovery from acidification of European surface waters in the year 2010: evaluation of projections made with the MAGIC model in 1995

    Get PDF
    In 1999 we used the MAGIC (Model of Acidification of Groundwater In Catchments) model to project acidification of acid-sensitive European surface waters in the year 2010, given implementation of the Gothenburg Protocol to the Convention on Long-Range Transboundary Air Pollution (LRTAP). A total of 202 sites in 10 regions in Europe were studied. These forecasts can now be compared with measurements for the year 2010, to give a “ground truth” evaluation of the model. The prerequisite for this test is that the actual sulfur and nitrogen deposition decreased from 1995 to 2010 by the same amount as that used to drive the model forecasts; this was largely the case for sulfur, but less so for nitrogen, and the simulated surface water [NO3–] reflected this difference. For most of the sites, predicted surface water recovery from acidification for the year 2010 is very close to the actual recovery observed from measured data, as recovery is predominantly driven by reductions in sulfur deposition. Overall these results show that MAGIC successfully predicts future water chemistry given known changes in acid deposition
    corecore