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ABSTRACT 19 

 20 

Pre-industrial (1850´s) and future (2060) streamwater chemistry of an anthropogenically 21 

acidified small catchment was estimated using the MAGIC model for three different scenarios 22 

for dissolved organic carbon (DOC) concentrations and sources. The highest modeled pH = 23 

5.7 for 1850´s as well as for 2060 (pH = 4.4) was simulated given the assumption that 24 

streamwater DOC concentration was constant at the 1993 level.  A scenario accounting for an 25 

increase of DOC as an inverse function of ionic strength (IS) of soilwater and streamwater 26 

resulted in much lower pre-industrial (pH=4.9) and future recovery to (pH=4.1) if the stream 27 

riparian zone was assumed to be the only DOC source. If upland soilwater (where significant 28 

DOC increase was observed at –5 cm and –15 cm) was also included, DOC was partly 29 

neutralized within the soil and higher pre-industrial pH=5.3 and future pH = 4.2 were 30 

estimated. The observed DOC stream flux was 2 – 4 times higher than the potential carbon 31 

production of the riparian zone, implying that this is unlikely to be the sole DOC source. 32 

Modeling based on the assumption that stream DOC changes are solely attributable to 33 

changes in the riparian zone appears likely to underestimate pre-industrial pH.  34 

 35 

KEYWORDS 36 

 37 

Acidification, surface waters, soils, dissolved organic carbon, MAGIC model, pre-38 

industrial water chemistry 39 

 40 

  41 
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1. INTRODUCTION 42 

 43 

Over the last two decades, concentrations of dissolved organic carbon (DOC) have shown 44 

widespread increases in surface waters in several regions in Europe (Pärn and Mander 2012; 45 

Hruška et al. 2009; Monteith et al. 2007) and North America (SanClements et al. 2012). The 46 

increases in DOC have been ascribed primarily to decreased acid deposition (Hruška et al. 47 

2009; Monteith et al. 2007; Evans et al. 2005), and the mechanism appears to be increased 48 

solubility of DOC due to decreased ionic strength of soil solution. Concentrations of DOC in 49 

acidified surface waters were thus probably higher in pre-industrial times relative to present-50 

day levels and may increase further in the future if acid deposition continues to decline.   51 

DOC decreases soil solution and surface water pH, increases concentrations of base cations 52 

and thus acid neutralizing capacity (ANC). Over the long term, soil base saturation is also 53 

affected. These parameters influence the health and vitality of aquatic and terrestrial 54 

organisms. The EU Water Framework Directive (2000/60) mandates achievement of good 55 

ecological status of all water bodies, including with respect to acidification. Assessment of 56 

good ecological status requires setting of the unpolluted reference condition to which the 57 

present-day state is to be compared.  The question of historical DOC concentrations is 58 

therefore important for quantifying present-day acidification and determining potential future 59 

recovery of surface waters.  60 

Due to the paucity of historical data, estimates of pre-acidification chemical and biological 61 

status usually come from modeling applications. This is also the case for DOC. Modeling 62 

DOC concentrations is predicated upon understanding the factors driving the observed 63 

changes. Determination of the origin of DOC in surface waters is key. Erlandsson et al. 64 

(2011) and Löfgren and Zetterberg (2011) have argued on the basis of data from Sweden that 65 

riparian zone processes account for the increased DOC in surface waters. Alternatively, 66 

increased concentrations of DOC in organic layers across the entire catchment could cause the 67 

observed increases in DOC in surface waters.  The cause of the observed increases in surface 68 

water DOC concentrations affects the calibration and application of models to reconstruct past 69 

and project future surface water chemistry.  70 

Here we use the long-term observed soil, soil solution and streamwater chemistry data 71 

from the Lysina catchment, Czech Republic, to develop empirical relationships between DOC 72 

and ionic strength in soil- and streamwater. We then use the process-oriented acidification 73 

model MAGIC (Cosby et al. 2001; Cosby et al. 1985) to evaluate the potential effect on soil- 74 

and streamwater acidification on the alternative possible sources of the increased DOC - 75 
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riparian versus organic layers. Lysina is a well-documented catchment in the formerly heavily 76 

polluted “Black Triangle” region in Central Europe (Oulehle et al. 2008). The streamwater 77 

shows chemical recovery from acidification and concurrent increases of soil- and streamwater 78 

DOC since 1990´s as a result of declining atmospheric deposition in the region (e.g. Hruška et 79 

al. 2009). Acidification of freshwaters is addressed by both the UN-ECE Convention on 80 

Long-range Transboundary Air Pollutants (LRTAP) and the European Union’s Water 81 

Framework Directive (WFD). Both of these international environmental policies strive to 82 

achieve good ecological quality in European freshwaters. Both are underpinned by scientific 83 

assessments of present-day acidification status relative to past reference conditions and to 84 

possibilities of achieving recovery from acidification in the future. For example, for surface 85 

waters in Sweden a contemporary pH<0.4 units below the 1860 reference pH is regarded as 86 

the threshold value for good ecological status according to the WFD with respect to 87 

acidification (Fölster et al. 2007, SEPA 2010). Realistic estimates of effect of DOC on 88 

historical pH are therefore essential. Thus reconstruction of the past and prognosis for the 89 

future requires application of models such as MAGIC.  90 

 91 

 92 

2. SITE DESCRIPTION  93 

 94 

The Lysina catchment (Table 1) is located in the Slavkov Forest, a mountainous region in 95 

the western Czech Republic (Figure 1). Lysina is an acid-sensitive site underlain by base-poor 96 

bedrock and soil with even-aged Norway spruce (Picea abies) plantations. Local soil is 97 

classified as a Folic Albic Skeletic Podzol with a sandy loam structure and a depth of about 98 

120 cm. Organic layer thickness varied typically between 4-7 cm. Soil pHw increases with 99 

depth from 3.4. to 4.2 (Banwart et al. 2012). Lysina is part of several catchment monitoring 100 

networks, e.g. in the Czech GEOMON (Oulehle et al. 2008), the international SoilTrEC 101 

Critical Zone Observatories (Banwart et al. 2012), and the International Cooperative 102 

Programmes on Waters and Integrated Monitoring (ICP Waters and ICP IM) (Holmberg et al. 103 

2013).   104 

 105 

3. MATERIAL AND METHODS 106 

 107 

3.1. Deposition, soil- and streamwater sampling 108 

 109 
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Bulk precipitation (since 1990) and throughfall (since 1991) were collected monthly. 110 

Soilwater samples were collected monthly since 1992 by means of zero-tension lysimeters at 111 

5 (beneath O horizon, two lysimeters) and 15 cm (below E horizon, two lysimeters) depth, 112 

and by tension lysimeters at 80 cm (lower B horizon, two lysimeters) depth. The lysimeters 113 

are located at the hillslope representing the most common soil type (skeletic podzol) and 114 

forest stand age (40-50 years old). Streamwater samples for chemical analysis were collected 115 

monthly in 1989 and weekly since 1990. Streamwater samples were also collected irregularly 116 

during high flow events (storms and intensive snowmelt). Streamflow from the catchment 117 

was monitored continuously since 1989 using a V-notch weir and a mechanical water level 118 

recorder. All annual mean concentrations for streamwater are discharge-weighted and are 119 

based on a November – October water year. Annual arithmetic means based on water year 120 

were used for soilwater. Oulehle et al. (2008) provide additional details on catchment 121 

chemistry. 122 

 123 

3.2. Chemical analyses 124 

 125 

Concentrations of Cl-, SO4
2-, and NO3

- in water samples were determined by ion-exchange 126 

HPLC, F- by ion-selective electrode after TISAB buffer addition, and concentrations of Ca2+, 127 

Mg2+, Na+, K+, and Al by atomic absorption spectroscopy (AAS) in unfiltered samples 128 

(Oulehle et al. 2008). Solution pH was determined using a combination glass electrode. DOC 129 

(filtered 0.45 µm) was determined using platinum-catalyzed, high-temperature oxidation 130 

using the non-purgeable organic carbon method (Hruška et al. 2009).  131 

 132 

3.3. Ionic strength (IS)  133 

 134 

Ionic strength was calculated from the chemistry of inorganic constituents (mol L-1): 135 

 136 

IS = 1/2∑𝑛
𝑖=1 ciZi

2    (Eq. 1) 137 

 138 

where c is the concentration and Z is the ionic charge of ion i. The IS was calculated from 139 

the measured concentrations of major cations and anions: Ca2+, Mg2+, Na+, K+, NH4
+, Aln+, 140 

H+, SO4
2-, NO3

-, Cl- and F-. The inorganic Al fraction was determined by the Al speciation 141 

method of Driscoll et al. (1984) modified for high Al concentrations (Hruška et al. 1994). The 142 
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concentrations of inorganic Al species (mostly Al-F and Al-OH complexes) were calculated 143 

using the chemical equilibrium model ALCHEMI (Schecher and Driscoll 1987). Thus the 144 

effect of DOC and F on Al charge was included in IS calculation. 145 

 146 

3.4. Acid neutralizing capacity (ANC)  147 

 148 

ANC was calculated on an equivalent basis as the difference between base cations and 149 

strong acid anions (µeq L-1): 150 

 151 

ANC = (Ca2+ + Mg2++ Na++ K+) - (Cl- + SO4
2-+ NO3

-)          (Eq.2) 152 

 153 

Although F- is also a strong acid anion, it was not used in the calculation of ANC, as 154 

concentrations are low and assumed not to change over time; these assumptions are usual in 155 

MAGIC model applications (e.g. Cosby et al. 1985, 2001).   156 

 157 

3.5. The MAGIC model 158 

 159 

3.5.1. Model description 160 

 161 

MAGIC (Model of Acidification of Groundwater in Catchments) is a lumped-parameter 162 

model of intermediate complexity, developed to predict the long-term effects of acidic 163 

deposition on soil and surface water chemistry (Cosby et al. 2001; Cosby et al. 1985). The 164 

model simulates soil and surface water chemistry in response to changes in drivers such as 165 

deposition of S and N, silvicultural practices, and climate. MAGIC calculates for each time 166 

step (annual time steps were used for this study) the concentrations of major ions under the 167 

assumption of simultaneous reactions involving SO4
2- adsorption, cation exchange, 168 

dissolution-precipitation-speciation of aluminum and dissolution-speciation of inorganic and 169 

organic carbon compounds. MAGIC accounts for the mass balance of major ions in the soil 170 

by accounting for the fluxes from atmospheric inputs, chemical weathering, net uptake in 171 

biomass and loss to runoff. Data inputs required for calibration of MAGIC comprise 172 

catchment characteristics, soil chemical and physical characteristics, input and output fluxes 173 

for water, concentrations of major ions, and net uptake of base cations and N by vegetation.  174 

 175 
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3.5.2. MAGIC calibration 176 

 177 

Measured data for catchment characteristics, soil, deposition and streamwater volume and 178 

chemistry were used to calibrate MAGIC. The fixed parameters (constant values that must be 179 

specified) were measured or estimated (such as soil depth and cation exchange capacity) 180 

(Table 2) or obtained by optimization as part of the calibration procedure (such as cation 181 

exchange coefficients and base cation weathering rates) (Table 3). Cosby et al. (2001) give 182 

definitions and details.   MAGIC was calibrated to the average streamwater and soilwater 183 

chemistry for the period 1990 – 1991. The calibration proceeded by sequential steps. The first 184 

steps involved calibration of the strong acid anions; Cl-, SO4
2- and NO3

- were calibrated by 185 

adjusting the deposition inputs and/or ecosystem uptake as described by Wright and Cosby 186 

(2003). This procedure resulted in the modeled sum of strong acid anions (SAA) in water 187 

equal to that observed. The next steps involved calibration of the base cations Ca2+, Mg2+, 188 

Na+, and K+. Here the model was run from an assumed steady-state condition in year 1850 to 189 

year 2010. A trial and error process was used to adjust the weathering rates of Ca2+, Mg2+, 190 

Na+, and K+ and initial soil exchange pools of these four cations until modelled concentrations 191 

of base cations in the streamwater, soilwater and modelled pools of base cations in the soil 192 

matched the observed for the calibration period 1990-2010. This step calculated the soil-193 

soilwater selectivity coefficients for base cations and Al exchange and the weathering rates 194 

for the four base cations (Table 2). At this point the modelled sum of base cations (SBC) 195 

equalled the observed for the calibration period, and thus also the modelled acid neutralising 196 

capacity (ANC) equalled the observed ANC (ANC was defined as SBC – SAA, Eq. 2). The 197 

final step entailed calibration of the weak acids (DOC) such that the simulated concentrations 198 

of H+, Aln+ and organic anions (A-) matched observations. This was achieved by adjusting the 199 

dissociation constants for organic acids, aluminum hydroxide, fluoride, and sulfate species, 200 

and organic aluminum complexes. We used a tri-protic model for organic acids with 201 

dissociation constants given by Hruška et al. (2003, Table 2 ).Relationships between DOC 202 

and IS in soilwater and streamwater were calculated using a power regression model for the 203 

period 1993-2010 (streamwater: DOC = 749.2*IS-0.5540  p<0.01, soilwater  – 5cm: DOC = 204 

494068*IS-1.3504, p<0.01, soilwater -15 cm: DOC = 41974*IS-1.0049, p<0.01) Long-term DOC 205 

concentrations were calculated using estimates of IS from the inorganic chemistry simulated 206 

by the MAGIC model for the period 1850-2060.  207 
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In a study based on H2
18O measurements in precipitation, soilwater and runoff, Buzek et 208 

al. (1995) calculated that on an annual basis streamwater at Lysina consists of about 5% direct 209 

overland flow and 95% leachate from soil. Of the latter, 40% drains from the upper mineral 210 

soil layer (-15 cm). The measured increase of DOC concentration in this layer was 192% 211 

between 1994 and 2010 (Figure 2). As there is no evidence of changes in DOC concentration 212 

in deep mineral soil (-80 cm), we assumed this to be constant and very low (measured data 213 

from 1993-4 and 2012 between 2.3-3.4 mg L-1). Thus the observed 192% increase of DOC 214 

flux in upper mineral soil was assumed to lead to a 36% increase in concentration of DOC in 215 

leachate from soil entering the stream from 1993-2010.  216 

 217 

3.6. Scenarios for DOC in soil and streamwater 218 

 219 

Three scenarios were modeled for the period 1850-2060 using different sets of assumptions 220 

concerning soil and streamwater DOC concentrations: 221 

 222 

A. Constant stream and soilwater DOC concentration as measured in 1993 (stable 223 

DOC scenario) 224 

B. Changing DOC over time inversely to IS only in stream (Figure 4) and not in 225 

soilwater for the catchment as a whole (riparian DOC scenario) 226 

C. Changing DOC over time inversely to IS in soilwater (Figure 3) throughout the 227 

catchment as well as in streamwater (Figure 4, soil DOC scenario) 228 

 229 

The MAGIC model was calibrated first for stable DOC in the stream using scenario A and 230 

then recalibrated to fit observed streamwater chemistry using changes of DOC parameters 231 

(scenarios B and C). 232 

For calibration and recalibration the measured or estimated parameters used were always 233 

identical for all three scenarios. The optimized parameters (cation exchange coefficients and 234 

base cation weathering rates) were changed to fit measured soil and stream chemistry data. 235 

Scenario B represents riparian source of DOC solely, with no connection with upland soils 236 

within the catchment. Thus optimized parameters connected to soil properties (all of them in 237 

Table 3) did not differ between scenarios A and B.  Only acid-base characteristics connected 238 

with DOC (e.g. pH at Figure 5) has changed. 239 

 240 

4. RESULTS 241 
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 242 

4.1. Observed chemical trends 243 

 244 

The Lysina catchment was strongly acidified by atmospheric deposition during the  second 245 

half of the 20th century (Hruška and Krám 2003; Krám et al. 1995; Krám et al. 2012); sulfur 246 

(S) and nitrogen (N) deposition (as estimated by throughfall fluxes) peaked in the late 1980’s. 247 

Deposition of S then declined from 30-34 kg ha-1 to 5-7 kg ha-1 in 2008-2010. (Figure 6) 248 

Inorganic N deposition decreased from 12-14 kg ha-1 to 7-10 kg ha-1 over the same period. In 249 

the stream, recovery was manifest mainly by a major decrease in sulfate concentrations from 250 

568 µeq L-1 in 1990 to 116 µeq L-1 in 2010. This 80% decline relative to 1990 mirrors the 77-251 

85% decline in atmospheric S deposition. The lower concentrations of strong acid anions 252 

were balanced by decreasing concentrations of sum of base cations (SBC = Ca2+ + Mg2+ +Na+ 253 

+ K+) from 434 µeq L-1 in 1990 to 144-174 µeq L-1 in 2008-2010, dissolved aluminum (from 254 

56 µmol L-1 to 28-29 µmol L-1), and to a lesser extent H+ (from 126 µeq L-1 to 80 µeq L-1). 255 

Streamwater pH increased from 3.9 in the early 1990’s to 4.1 in 2010. Chemical recovery at 256 

Lysina is described in detail by Hruška and Krám (2003) and Krám et al. (2012) and is typical 257 

for recovery from acidification of poorly-buffered catchments (e.g. Moldan et al. 2013). More 258 

detailed streamwater chemistry is available (Online Resource 1). 259 

During the recovery the mean annual DOC concentrations increased significantly in 260 

streamwater as well as in soilwater (p<0.001, Figure 2). There are large year-to-year 261 

variations due to variations in precipitation amount with higher DOC concentrations in wet 262 

years (see Online Resource 2). The annual mean streamwater DOC concentration increased 263 

from 15.6-16.9 mg L-1 (1993-1994) to 21.8-24.5 mg L-1 in 2010-2011, an average annual 264 

increase of 0.6 mg L-1 year-1 (p<0.001). Even stronger DOC trends were observed for water 265 

draining the upper soil horizons (Figure 2). Mean annual DOC increased from 41-42 mg L-1 266 

in 1993-1994 to 67-74 mg L-1 in 2010-2011 at 5 cm depth beneath the O horizon, an annual 267 

increase of 2.7 mg L-1 year-1 (p<0.001). At 15 cm depth below the E horizon DOC 268 

concentrations increased from 31-34 mg L-1 to 68-73 mg L-1, an annual increase of 1.9 mg L-1 269 

year-1 (p<0.005). Hruška et al. (2009) showed that change in ionic strength (IS) is the best 270 

predictor of observed changes in DOC at this site. 271 

 272 
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4.2. Scenarios for DOC in soil and streamwater 273 

 274 

The resultant optimized parameters for the soil DOC scenario C include higher weathering 275 

rates for Ca, Mg, Na and K compared to the constant DOC scenario A, but with lower initial 276 

(year 1850) Ca and Mg % saturation of the soil cation exchange complex (Table 3).  277 

The simulated streamwater DOC concentrations  agreed fairly well with the observed for the 278 

period 1993-2010 (Figure 4). The higher observed versus modeled DOC concentrations in 279 

2002 and 2007 may be due to weather conditions during this time. The extremely wet year 280 

2002 (annual runoff 747 mm was highest recorded since 1989) and the high number of 281 

summer storms in 2007 resulted in positive residuals from the DOC-IS relationship.    282 

All modeled scenarios satisfactorily reproduced measured mean annual chemistry for the 283 

period 1990-2010 (Figure 5).The most striking changes in DOC - sharp decrease between 284 

1950´s – 1980´s and increase between 1990´s and 2010´s - was caused mainly by changes in 285 

S deposition in the region (Figure 6). Historical estimate of S deposition was derived from 286 

Kopáček and Veselý (2005) for the period 1860-1990. The leveling of DOC concentrations 287 

(Figure 3 and 4) for the future corresponds with model predictions of future S deposition in 288 

Europe where only slight decreases are expected from 2010 to 2030 under the scenario of full 289 

implementation of current legislation (CLE) (Schöpp et al. 2003). 290 

 291 

4.3. Streamwater acidity 292 

 293 

The three DOC scenarios gave different simulated values for pre-industrial (1850) 294 

streamwater acidification parameters (Figure 5). Under the constant DOC scenario A pre-295 

industrial streamwater pH was simulated to be 5.7 (Figure 5) and future pH (to 2060) was 296 

estimated to be 4.4. Under the riparian only scenario B pre-industrial streamwater pH was 297 

simulated to be 4.9 and future pH only 4.1. Under the scenario with DOC changes in both soil 298 

and streamwater (scenario C) a pre-industrial streamwater pH of 5.3 and a future pH of 4.2 299 

was simulated. 300 

 301 

4.4. Base cations and soil base saturation.  302 

 303 

The stable DOC scenario A and riparian DOC scenario B gave estimated pre-industrial 304 

base cation concentrations of about 185 µeq L-1 and a future prediction of about 160 µeq L-1 305 

after 2020 (Figure 5). When changes in soilwater DOC were taken into account (scenario C), 306 
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historical estimated base cation concentrations increased to 220 µeq L-1, and the future 307 

prediction was 185 µeq L-1.  Historical soil base saturation (Figure 5) was estimated to be 308 

27.5% and future prediction of 5.5% for both A and B scenarios after 2020. Inclusion of 309 

soilwater DOC dynamics resulted in pre-industrial base saturation of 23.5% and future 310 

prediction of 7.0%. 311 

 312 

4.5. Acid neutralizing capacity (ANC)  313 

 314 

ANC was modeled at 130 µeq L-1 for the pre-industrial period for both A and B scenarios, 315 

decreased significantly during period of high acidic deposition (minimum –235 µeq L-1 in 316 

1986) and was predicted to increase to 15-25 µeq L-1 after 2020 (Figure 5). A slightly higher 317 

ANC was estimated for scenario C: 165 µeq L-1 for 1850, with substantially greater predicted 318 

recovery to 40-50 µeq L-1 after the year 2020.  319 

 320 

5. DISCUSSION 321 

 322 

5.1. DOC trends.  323 

 324 

The increases in concentrations of DOC in streamwater as well as soilwater at Lysina 325 

(Figure 2) are among the largest reported from acid-impacted sites in the Northern 326 

Hemisphere. The widespread increases in surface water DOC concentrations reported from 327 

many regions are widely believed to be due to decreasing acid deposition and associated 328 

decreased acidity of soilwater and streamwater (Monteith et al. 2007; Clark et al. 2011; 329 

SanClements et al. 2012). Although a number of other climatic and land-use related factors 330 

have also been invoked as possible explanations for some or all of the observed changes (Pärn 331 

and Mander 2012; Eimers et al. 2008; Sarkkola et al. 2009; Zhang et al. 2010), recent data 332 

from field manipulation experiments provide strong support for deposition change as a major 333 

driver (Evans et al. 2008; Evans et al. 2012; Evans et al. 2005; Ekström et al. 2011; Moldan et 334 

al. 2012; Kopáček et al. 2009; Bragazza et al. 2006). It is hard to disentangle IS and acidity 335 

control on DOC mobility. It is not trivial (even not possible) to use acidity as driving force for 336 

estimating historical DOC concentration.  DOC, as weak acid acid-base system, contributes 337 

significantly to stream and soilwater acidity, and the depletion of soil cations-exchange 338 

complex and Al mobilization by high deposition of strong acids has changed soil and water 339 

acidity (e.g Hruška et al. 2009; Evans et al. 2005). Present soil and streamwater pH is 340 
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significantly lower compared to similar deposition loads in the beginning of the 20th century. 341 

The effect of IS on DOC coagulation is another potentially important mechanism affecting 342 

DOC concentrations. Decreasing IS as a result of decreasing deposition should lead to lower 343 

concentrations of divalent ions in soils and streams (Ca2+, Mg2+, SO4
2-) and thus a lower IS 344 

(eq. 1). Several studies have shown explicitly that increasing IS reduces DOC concentrations 345 

(e.g. Hruška et al.2009). Regional studies, and intensive evaluation of catchment monitoring 346 

attributed observed increases in DOC concentrations to reduced atmospheric deposition, but 347 

they do not distinguish between the effects of pH and Al, nor the effects of ionic strength 348 

alone (Monteith et al. 2009). At Lysina the majority of the IS decrease was caused by 349 

declining SO4
2- deposition and consequently a decline of SO4

2- and base cation 350 

concentrations in soilwater and streamwater (see Online Resource 1).  For both SO4
2- and 351 

base cations, long-term trends are possible to model with MAGIC independently of acid-base 352 

characteristics. Thus IS provides a reasonable proxy for DOC. Nevertheless, it is not yet 353 

completely resolved whether the key mechanism responsible for observed DOC responses to 354 

changing deposition is the decrease of acidity itself, resulting in lower H+ and dissolved Al 355 

(Evans et al. 2012; Clark et al. 2011), or the decrease in ionic strength (e.g. (Hruška et al. 356 

2009; Moldan et al. 2012). This uncertainty arises in part from the fact that both possible 357 

mechanisms respond simultaneously to changes in ambient deposition, making their relative 358 

importance difficult to disentangle from monitoring data. Data from experiments where 359 

alkaline treatments have been applied (reducing acidity but increasing IS), indicate a rise in 360 

DOC, providing some support for the role of acidity as the dominant control on DOC mobility 361 

(Ekström et al. 2011). However, evidence of DOC increases from base-rich catchments 362 

(where IS responds more strongly than pH to deposition changes) suggests an important role 363 

for ionic strength (Hruška et al. 2009). In practice, since pH and IS are both strongly linked to 364 

S deposition, assumptions made about their relative importance would not fundamentally alter 365 

the trajectory of modeled DOC change. 366 

  367 

5.2. Reconstruction of historical DOC. 368 

 369 

 Water chemistry, represented by IS or SO4
2- concentrations, has been used by several 370 

authors as a proxy for long-term DOC changes. Kopáček et al. (2009) used SO4
2- 371 

concentrations to estimate the long-term change of DOC at Plešné Lake in the Bohemian 372 

Forest, Czech Republic. Their results indicated that decreases in DOC concentrations of 70-373 

80% during acidification in comparison to pre-industrial levels. Evans et al. (2005) used the 374 
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combination of SO4
2- deposition, rainfall and summer temperature to estimate temporal DOC 375 

changes for an upland stream in UK. The simulated decline in DOC concentrations during 376 

acidification was ca. 70% relative to the pre-industrial concentrations. Based on experimental 377 

evidence of increased DOC leaching in response to nitrogen addition (Bragazza et al. 2006), 378 

and theoretical links between nitrogen availability, net primary productivity and DOC 379 

production in low-nutrient systems, Tipping et al. (2012) used the N14C model to simulate a 380 

long-term increase in DOC leaching since the pre-industrial period. As noted by the authors, 381 

the model omits acidity controls on carbon cycling, and further work is needed to establish the 382 

importance of N deposition as a driver of increased DOC leaching. A recent extension of 383 

N14C to incorporate acidity effects on DOC mobility (Rowe et al., in review) suggests that 384 

the acidity effect dominates historical and recent DOC variations, whilst any nitrogen effect 385 

might become more evident in the future, as S deposition stabilizes at low levels. 386 

Paleolimnological reconstructions of DOC by near infrared spectroscopy from lake sediments 387 

in Sweden (Cunningham et al. 2011) also support a dominant role of acidification on 388 

historical DOC variations, suggesting that pre-industrial lake water DOC concentrations were 389 

two times higher compared to present. Thus our estimate of the reduction in stream DOC by 390 

58% with respect to pre-industrial concentrations during the 1980s falls within the range of 391 

most published data.  Positive residuals in observed versus modeled DOC in recent wet years, 392 

as well as negative residuals during dry years, also highlight the potential sensitivity of DOC 393 

leaching to inter-annual hydrological variation (see also Erlandsson et al. (2008); any future 394 

climatic shift towards wetter or drier conditions at this site could, therefore, moderate the 395 

long-term trajectory of DOC change shown in Figures 3-4. 396 

 397 

5.3. DOC origin 398 

 399 

Soils, in particular shallow organic soils, are thought to be the main source of DOC in most 400 

headwater catchments (Cunningham et al. 2011). Recent studies from Sweden (Erlandsson et 401 

al. 2011; Löfgren et al. 2010), however, suggested only a minor contribution of soilwater 402 

DOC to streamwater concentrations. Instead, they argue that most of the DOC derives from 403 

the riparian zone around streams. This hypothesis, however, is not supported by available 404 

long-term soil solution data. The majority of reported DOC trends in the organic layers in 405 

areas recovering from acidification suggest increases similar in magnitude to those observed 406 

in surface waters (Hruška et al. 2009; Borken et al. 2011; Stutter et al. 2011). For mineral soil 407 

horizons the picture is more mixed, with increases at some sites (Stutter et al. 2011; Hruška et 408 
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al. 2009), but decreases at others (Löfgren and Zetterberg 2011; Stutter et al. 2011; Borken et 409 

al. 2011). 410 

There are limits to how much DOC a riparian zone could produce alone without 411 

replenishment of DOC by leachate from upland soils. At Lysina, the total length of riparian 412 

zone along the stream channel and associated artificial ditches is estimated to 2700 meters 413 

(Figure 1). Along these channels the riparian zone is irregularly developed. We estimate the 414 

area of the riparian zone (based on width between 0.25-1 m along the stream) to be between 415 

1400 and 5500 m2, comprising 0.5 to 2% of the total catchment area). Sphagnum species 416 

which dominate those wet environments typically have an annual net primary productivity 417 

(NPP) of carbon ranging between 200 and 400 g C m-2 yr-1 (Gunnarsson 2005). Thus 400 to 418 

1700 kg C yr-1 could be produced by the riparian zone each year. This amount of C, assuming 419 

steady state conditions, is then available for heterotrophic respiration (with subsequent 420 

partitioning between CO2 and DOC). Annual average export of DOC (2007-2009) was 118 421 

kg ha-1 yr-1, thus total annual export from the whole catchment was 3221 kg C yr-1, which is 2 422 

– 4 times more than our estimate of total NPP of Sphagnum species along stream channels. It 423 

is thus unlikely that the riparian zone is the sole source of DOC exported in streamwater. 424 

Based on the 18O study (Buzek et al. 1995), consistent and coherent increases of shallow 425 

mineral soilwater DOC concentration and streamwater DOC, and the insufficient spatial 426 

extent of riparian wetlands to provide the full observed DOC flux, we believe that substantial 427 

part of DOC in the stream is derived from upland forest soils by lateral transport through the 428 

shallow mineral soil, which contributes around 40% to annual catchment runoff. The 36% 429 

increase in soil DOC leachet entering the stream (derived from observed soilwater DOC 430 

increases and 18O data) agrees very well with 37% observed increase of streamwater DOC 431 

(Figure 2). This result suggests that there is no need to invoke additional sources or 432 

biogeochemical processes within the riparian zone in order to explain observed DOC trends. 433 

 434 

5.4. Weak acid-base chemistry and base cation fluxes 435 

 436 

Organic acids are represented in MAGIC by a triprotic acid analogue (Hruška et al. 2003; 437 

Driscoll et al. 1994). The total organic acid concentration is based on charge density and the 438 

observed DOC in runoff. The charge density is calibrated such that the simulated and 439 

observed weak acid anion concentrations agree. The higher soil solution concentration of 440 

organic acids in scenario C resulted in more acidic soil conditions in the beginning of 441 

simulation (1851) with subsequently more negative Al-base cations (Al-BC) selectivity 442 
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coefficients (Table 3). As a consequence, higher calibrated weathering rates of base cations 443 

and slightly lower initial base saturation were required to fit the observed values (Table 2 and 444 

3). From the conceptual point of view, as accommodated in the MAGIC model, it is clear that 445 

changing soil solution organic acid concentration affects Al-BC selectivity coefficients, thus 446 

affecting the calibrated weathering rates and consequently modeled concentrations of 447 

streamwater base cations and soil base saturation (Figure 5). Adjusted BC fluxes to fit the 448 

observed data in scenario C resulted in higher initial pH (pH of 5.3) when compared to 449 

scenario B where only a DOC increase in streamwater was modeled (pH of 4.9). Soil 450 

processes are sensitive to organic acid concentrations and omitting their long-term changes 451 

could lead to unrealistic estimates of pre-acidification conditions (Evans et al. 2005).  452 

 453 

5.5. Comparison of stream-water chemistry among scenarios 454 

 455 

As illustrated by the example here from the Lysina catchment (Figure 5), an understanding 456 

of the processes controlling DOC concentrations in soil and water is central to such modeling. 457 

Based on documented time series from the last two decades, it seems clear that estimates 458 

based on stable DOC from the 1990s (solid black lines in Figure 5) give unrealistically high 459 

simulated pre-industrial pH (5.7) as well as future predicted pH increases. Scenarios based on 460 

an IS-DOC relationship (Figure 3) give a better fit to observations, and result in higher 461 

simulated pre-industrial DOC and lower pH (dotted black and dotted grey lines in Figure 5). 462 

The scenario taking account of soilwater contributions to streamwater DOC resulted in a pre-463 

industrial estimate of pH=5.3. The estimate based on a riparian-only DOC contribution to the 464 

stream resulted in a pre-industrial pH of only 4.9. We consider this later scenario also 465 

unrealistic, because there is insufficient potential carbon supply from the riparian zone to 466 

generate the observed DOC exports, and because observed DOC changes in streamwater 467 

could be effectively reproduced by simple mixing of observed DOC leachate chemistry from 468 

the upper soil with a fixed lower soilwater input, without the need to invoke additional 469 

riparian processes.  Thus, the most plausible scenario appears to be the change in soilwater 470 

DOC in the organic soil horizon throughout the catchment. This may help to explain previous 471 

observations that the MAGIC model tends to give a higher simulated pre-industrial pH 472 

estimate than paleolimnological techniques (Battarbee et al. 2005). On the other hand, this 473 

scenario slightly increased the estimated pre-industrial ANC as a result of higher weathering 474 

rate of base cations (Table 3). Modeling pre-industrial pH based on the assumption that 475 

stream DOC changes are solely attributable to changes in the riparian zone (Erlandsson et al. 476 
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2011) appears likely to result in a substantial under-estimate of pre-industrial pH, because this 477 

assumption does not account for the increased loss of base cations from the soil. To arrive at 478 

present-day concentrations of base cations, therefore, one must start with higher weathering 479 

rates of base cations in the past, and thus higher pH in the past. 480 

Finally, our study has some implications for catchment management. In relation to both 481 

acid-base chemistry and DOC leaching, our results suggest that water quality is controlled by 482 

processes operating at the whole-catchment scale, and by external (i.e. atmospheric 483 

deposition) drivers. It is thus highly doubtful whether it would be possible to arrest recent 484 

increases in surface water DOC (which are often viewed as detrimental, for example from a 485 

water treatment perspective) through altered riparian zone management. While this conclusion 486 

may not necessarily apply to other water quality issues such as eutrophication or organic 487 

pollutants, we argue that, in general, a whole-catchment approach to water quality 488 

management is likely to be more effective than a focus solely on riparian ‘buffer zones’. 489 

 490 

6. CONCLUSIONS 491 

 492 

We show that changes in DOC concentrations in soilwater within the forest catchment can 493 

significantly affect predictions of past and future streamwater chemistry. Taking into account 494 

soilwater contributions to streamwater chemistry and modeled long-term changes in DOC 495 

concentrations in response to changing deposition chemistry, the historical pH of streamwater 496 

was estimated to be lower than if DOC had remained constant over time  (pH=5.3 versus 497 

pH=5.7). Incorporating variable DOC also resulted in lower estimates of historical soil base 498 

saturation (23.5% versus 27.5%) and higher base cation weathering rates (80.5 meq m-2 yr-2 499 

versus 66.5 meq m-2 yr-2). 500 

The hypothesis that riparian zone is the sole source of DOC in streamwater was rejected, as 501 

there was insufficient potential carbon supply from the riparian zone. Observed DOC stream 502 

flux was 2-4 times higher than the potential carbon production in riparian zone. 503 

 504 
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Figure captions 662 

 663 
Figure 1. Map of Europe showing Lysina catchment with natural streams and drainage 664 

ditches.  665 

 666 
Figure 2. Trends in mean annual DOC is streamwater (open circles) and soilwater (squares: 667 

-5 cm depth, black circles: -15 cm depth) for the period 1993-2011 at the Lysina catchment. 668 

 669 

 670 
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 671 
Figure 3. Reconstructed and predicted trends of DOC in soilwater at -5 and -15 cm for the 672 

period 1851-2060. DOC was adjusted by IS derived from MAGIC calibration.  673 
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 674 
Figure 4. Reconstructed and predicted trends of DOC in streamwater for the period 1851-675 

2060. DOC was adjusted by IS derived from MAGIC calibration.   676 
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 677 

 678 
Figure 5. Simulated and observed pH, concentrations of sum base cations (SBC) and ANC 679 

in streamwater and % base saturation in soil at Lysina between 1851-2060. The solid black 680 

line depicts the simulation with constant DOC concentrations as measured in 1993 (scenario 681 

A). The gray dotted line depicts the situation when all streamwater DOC was derived from 682 

riparian zone only (scenario B). The dotted black line shows the scenario with simultaneous 683 

increases of DOC in soilwater and streamwater (scenario C). Scenario B is not shown where it 684 

is identical with scenario A.  685 

 686 
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 687 
 688 

Figure 6. Deposition of S at Lysina over the period 1850 - 2050. The estimated historical 689 

trend between 1860-1990 is from Kopáček & Veselý (2005), and the future trends assume full 690 

implementation of the CLE scenario (solid line). Circles show the measured annual deposition 691 

(1991-2010). 692 

  693 
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Table captions: 694 

 695 

Table 1. Characteristics of the Lysina catchment  696 

 697 
 698 

 699 

 700 
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701 
 702 

Table 2. Selected fixed parameters used to calibrate MAGIC to Lysina. 703 

 704 
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 705 

706 
 707 

Table 3. Parameters optimized in the three scenarios such that simulated and observed soil 708 

and streamwater chemistry match for the reference year 1991. 709 

 710 

 711 
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