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ABSTRACT: In 1999 we used the MAGIC (Model of Acidification of
Groundwater In Catchments) model to project acidification of acid-
sensitive European surface waters in the year 2010, given implementa-
tion of the Gothenburg Protocol to the Convention on Long-Range
Transboundary Air Pollution (LRTAP). A total of 202 sites in 10
regions in Europe were studied. These forecasts can now be compared
with measurements for the year 2010, to give a “ground truth”
evaluation of the model. The prerequisite for this test is that the actual
sulfur and nitrogen deposition decreased from 1995 to 2010 by the same
amount as that used to drive the model forecasts; this was largely the
case for sulfur, but less so for nitrogen, and the simulated surface water
[NO3

−] reflected this difference. For most of the sites, predicted surface
water recovery from acidification for the year 2010 is very close to the
actual recovery observed from measured data, as recovery is predominantly driven by reductions in sulfur deposition. Overall
these results show that MAGIC successfully predicts future water chemistry given known changes in acid deposition.

1. INTRODUCTION

During much of the 1900s large regions of Europe suffered from
the effects of acid deposition, due to the emissions of sulfur and
nitrogen oxides to the atmosphere.1 Long-range transport of air
pollutants caused acidification of surface waters with loss of fish
and other damage to biota.2 In 1979 the LRTAP Convention
under the auspices of the UnitedNations Economic Commission
for Europe (UNECE) was established with the aim to reduce the
emissions of sulfur and nitrogen.3 Since the mid-1980s a series of

protocols have been implemented, and the emissions of sulfur

and nitrogen have been reduced substantially.4,5 In response,

acidified surface waters have shown widespread chemical6,7 and

to a lesser extent biological recovery.8−10
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Research on the acidification of soils and waters led to the
development of process-oriented acidification models. One of
these, MAGIC (Model of Acidification Of Groundwater In
Catchments),11,12 has been extensively used to simulate
historical and future trends in surface water acidification at
sites and regions around the world.13,14

In 1999 a major European research project, RECOV-
ER:2010,14,15 was started with the aims to document the
recovery in surface water acidification 1970−2000,16 and to use
MAGIC to forecast the future changes expected if the
Gothenburg Protocol to the LRTAP Convention was
implemented by the year 2010, as agreed.17 A total of 202 sites
in 10 European regions were studied. At each site MAGIC was
calibrated to observed data for the years 1994−1996, and
forecasts were made for the year 2010 to represent the time of
implementation for the Gothenburg Protocol (average 2008−
2010).
Now, 15 years later, we revisit these MAGIC forecasts to

determine if the predictions made in 1999 indeed came true. First
we compare the projected deposition of sulfur and nitrogen in
2010 with the actual measured values. Then we check that the
simulated surface water concentrations of the strong acid anions
SO4

2− (sulfate) and NO3
− (nitrate) agree with the MAGIC

forecasts. And finally we compare the simulated with observed
values for acid neutralizing capacity (ANC) in the waters. This is
the first paper of its kind to report on testing long-term MAGIC
model predictions against actual observations at a European
scale.

2. MATERIALS AND METHODS
2.1. Sites. The 202 sites in 10 regions cover a wide range of

acid-sensitive landscapes, from high-altitude alpine meadows and
rocky catchments in the Italian Alps and Tatra Mountains of
Slovakia and Poland, to Central European and Scandinavian
forests, to peaty moorlands and forested sites in the UK (Figure
1, Table 1). The catchments typically have podzolic soils derived
from highly siliceous primary minerals, with low rates of chemical
weathering. Waters are dilute with low alkalinity. Additional
details are given by Jenkins et al.17 The number of sites analyzed
here differ from the number of sites modeled in the 2003−2004
publications (Table 1) because not all sites were monitored
during the period 1995−2010 due to resource limitations.
2.2. Data Sources. For this study we used the MAGIC

forecasts made in 1999 for the individual sites. The 1999
forecasts were driven by the projected sulfur and nitrogen
deposition over the period 1995−2010 as calculated by the
EMEP (European Monitoring and Evaluation Programme)
Lagrangian acid deposition model.27 EMEP is part of the LRTAP
Convention. This old version of the EMEPmodel gave estimates
of average deposition for sulfur and nitrogen in each 150 km ×
150 km grid square covering Europe. Data were supplied at 5-
year intervals27 and were computed by assuming identical
average meteorological conditions each year. Values were
obtained for the calibration year 1995 and the year 2010 under
the assumption that the Gothenburg Protocol and other current
legislation were fully implemented (the CLE scenario).4 The
regional estimates of 1995 sulfur deposition were scaled to match
observed concentrations of SO4

2− in surface water at each site,
after first subtracting the seasalt contribution and the natural
background contribution (details in ref 17). The deposition of
NOx (sum of oxidized species of nitrogen) and NHy (sum of
reduced species of nitrogen) were then calculated from the NOx/
S and NHy/S ratios in the EMEP data and the scaled sulfur

deposition at each site. Total inorganic nitrogen (TIN) is defined
as NOx + NHy. Depositions for the year 2010 were calculated
from the percentage change between 1995 and 2010 in the
EMEP data sets.
To check if changes in sulfur and nitrogen deposition at the

sites from 1995 to 2010 were similar to the declines projected by
the EMEPmodel under the CLE scenario, we obtainedmeasured
deposition data for one or more stations in each of the 10 study
regions. These stations are operated by various national agencies,
in most cases as part of the EMEP network.
Measurements of lake and stream chemistry for the period

1995−2010 likewise came from national monitoring programs,
in many cases as part of the International Cooperative
Programme on Assessment and Monitoring Effects of Air
Pollution on Rivers and Lakes (ICP-Waters), part of the LRTAP
Convention. Where hydro-chemical analysis took place outside
the ICP-Waters network, standard protocols were followed in
quality assured laboratories.

Figure 1. Map of Europe showing the location of regions.

Table 1. Study Regions with Key References for Previously
Published MAGIC Forecasts

region waterbody
no. of
sites

ref(s) for MAGIC
forecasts

Scotland, UK lakes 42 18
Norway lakes 31 19,20
northern Sweden lakes 32 21
southern Sweden lakes 32 21
Finland lakes 24 22
Slavkov Forest, Czech
Republic

rivers 2 23

Bohemian Forest, Czech
Republic

lakes 3 24

Tatra Mountains, Slovakia lakes 30 25
Alps, Italy lakes 4 26
northern Italy rivers 2 26
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For surface waters, a set of three key variables are considered:
acid neutralizing capacity (ANC), xSO4

2− (non-marine sulfate),
and NO3

−. ANC was defined as the difference in the equivalent
sum of base cations (calcium (Ca), magnesium (Mg), sodium
(Na), potassium (K)) and acid anions (chloride (Cl), sulfate
(SO4

2−), nitrate (NO3
−)). The variables selected illustrate the

main surface water responses to changes in acid deposition, with
xSO4

2− and NO3
− representing the major acidifying anions, and

ANC providing a measure of surface water acidity and a link to
biota. Gran alkalinity was used instead of ANC to evaluate the
model performance for Bohemian Forest sites.24 Gran alkalinity
was determined according to Mackereth et al.28 All references to
SO4

2− in deposition and surface water in this paper refer to
xSO4

2− except for sites in Italy, Czech Republic, and Slovakia,
where SO4

2− is reported as these sites are remote from coastal
areas with negligible sources of Cl. River and lake sites in Italy
share the same deposition data.
2.3. Data Analysis. The changes in observed and simulated

deposition (flux) and surface water chemistry (concentration)
between 1995 and 2009 were calculated as the average of values
in 2008−2010 minus the average of 1994−1996. For surface
water chemistry, this was performed per site in the region (as
defined as a collection of sites within a country), and values were
averaged to give the regional mean (Δ). The standard deviation
(σ) between sites within each region (where the number of sites
is >4) was also calculated (Table 2). Simulated deposition fluxes
(EMEP with CLE scenario) were generally only available on a 5
year basis, so the start year was taken as 1995. The 2009 value was
gained by linear interpolation between the 2005 and 2010 points.
2009 was chosen as the end year, as the majority of regions had
observed deposition data until 2009 only. These start and end
years were chosen to maximize the data interval while also
maximizing the number of regions with observations. As a result,
not all regions had data to be averaged for all three of the start/
end years, in which case the average of the available years was
used. The number of sites used in the regional averaging is given
(Table 2, below).
Correlations between projected and observed surface water

chemistry for 2009, and for differences between 2009 and 1995,
were calculated, and the significance of the correlation coefficient
was assessed. Where there were sufficient sites in a region, this
was done for individual regions (Table 3, below). A high
correlation between projected and observed values simply

indicates the ability of the model to predict relative
concentrations at different locations, while the correlation
between predicted and observed changes provides a better
indicator of the predictive ability of the model. Paired t tests were
also carried out to assess whether there were significant
differences between the means of the observed and projected
values for 2009 and of changes from 1995 to 2009.

2.4. MAGIC Model. The MAGIC model was developed to
predict long-term effects of acid deposition on soil and surface
water chemistry.11−13 MAGIC calculates annual or monthly
concentrations of ions in soil solution and surface water using
mathematical solutions to simultaneous equations describing
sulfate adsorption, cation exchange, dissolution−precipitation
speciation of aluminum, and dissolution−speciation of inorganic
and organic carbon. The model accounts for the mass balance of
major ions by simulating ionic fluxes from atmospheric inputs,
chemical weathering, net uptake in biomass, and loss to runoff.

3. RESULTS

3.1. Deposition. The first step in the analysis is to compare
the year 2009 deposition of sulfur and nitrogen, and the
decreases in deposition from 1995 to 2009, projected by the
EMEP model given the CLE scenario, with the actual observed
deposition (average values for the years 1994−1996 and 2008−
2010). This is to check how closely the actual measured
deposition from the calibration year (i.e., 1995) to the present
(i.e., 2008−2010) match the deposition sequences used in the
MAGIC forecasts. The projected surface water chemistry cannot
be expected to match the observed, if the driver of change, the
deposition of sulfur and nitrogen, used in the model was not
similar to the observed (Supporting Information, Figure S1). A
large deposition gradient is represented in this European
assessment with the lowest deposition in Scandinavia and
Scotland and the highest in Slovakia, Czech Republic, and Italy
(Figure 2). Sites that historically received high anthropogenic
deposition also exhibit the highest reduction in sulfur and
nitrogen emissions and deposition (Figure S1). For example, the
present sulfur emissions in central Europe (mostly in post-
communist countries) decreased by 90% and are lower than in
1900. Also NOx emissions declined by∼50% (to the levels of the
1960s), and NH3 emissions are lower than in 1850s, due to a
drastic reduction in cattle production.29

Figure 2.Deposition of (a) xSO4
2− and (b) total inorganic nitrogen (TIN) for 2009 as projected by the EMEP model assuming full implementation of

the Gothenburg protocol and other legislation (CLE scenario) and as observed at one or more stations in each of the 10 regions studied.
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The results show that the actual decreases in deposition of
xSO4

2− over the period 1995 to 2010 was, for the regions
together, about the same as those expected under the CLE
scenario (Table 2). The correlation between the predicted and
observed changes in xSO4

2− was 0.92 (p < 0.001). However, for
TIN, although the correlation between predicted and observed
values in 2009 was 0.85 (p = 0.004), the correlation between the
predicted and observed changes was only 0.42 (p = 0.257). There
are several possible explanations for the differences between
projected and observed deposition:

1. Measurements at a single site do not (and cannot, except
by chance) represent modeled deposition for a grid cell of
22,500 km2.

2. Emissions of sulfur and nitrogen did not decrease as
expected, or the decreases did not occur in the geographic
locations (within a country) as expected.

3. The meteorological conditions in the years of interest
(1995 and 2008−2010) differed from the meteorology
used in the EMEPmodel, thus the deposition of sulfur and
nitrogen was not distributed geographically as expected.

4. The EMEP model does not (and cannot) capture all the
local (within-grid) variability of orography, land cover and
meteorology and thus might give an inaccurate deposition
at certain sites.

3.2. Surface Water Chemistry. For the period 1995−2009,
large decreases of the concentrations of xSO4

2− in surface waters

were forecast by MAGIC, and these forecasts agreed well with
the actual measured concentrations (Figure 3a, Supporting
Information Figures S2 and S3, Tables 2 and 3). However,
although there were significant correlations between the
observed and projected changes in concentrations, there were
also significant differences in the mean values (Table 3).
Unlike xSO4

2−, the observed NO3
− trends in surface waters

were highly variable with no evidence of a consistent Europe-
wide trend from 1995 and 2009. This result complements recent
European trend analysis as part of the ICP Waters program30 as
well as a previous European assessment of surface water NO3

−

trends.31 In some regions NO3
− concentrations increased

(Slavkov Forest and Bohemian Forest, Czech Republic), and
in other regions no major changes were observed (Finland,
northern Sweden), while concentrations decreased in Scotland
(Galloway), Slovakia (Tatra Mountains), and Norway (Table 2,
Figure 3d, Supporting Information Figures S4 and S5).
The simulated changes in concentrations of NO3

− from 1995
to 2010 in general did not match the observed (Table 3). In most
regions the correlation between the predicted and observed
changes was not significant, and in some regions there was a
significant difference between the mean predicted and observed
changes. The simulations assumed that the fraction of incoming
nitrogen retained in the terrestrial catchments remained constant
from 1995 to 2010. As nitrogen deposition decreased over most
of Europe during this period, the simulations forecast a
proportional decline in NO3

− concentrations in surface waters.

Table 2. Change in Simulated and Observed Surface Water and Deposition Chemistry between 1995 and 2009a

Surface Water Chemistryb

xSO4
2− NO3

− ANC

MAGIC obsd MAGIC obsd MAGIC obsd

region no. sites Δ σ Δ σ Δ σ Δ σ Δ σ Δ σ

Czech Rep. (Slavkov F.) 2 −458 −10 −509 47 −7 −1 21 −1 80 6 194 88
Czech Rep. (Bohemian F.) 3 −57, −70, −68 −44, −60, −81 −17, −16, −9 −8, −5, 60 8, 15, 9 7, 8, 5
Finland 24 −29 16 −31 21 0 1 0 2 7 4 12 17
Italy (lakes) 4 −10 −10 47 12 −1 −2 −1 −3 6 8 88 75

−17 −19 −16 −17 −2 −2 −7 −4 11 12 9 3
Italy (rivers) 2 −26 −26 −14 −19 −3 3 −4 3 −3 −18 12 45
Norway 31 −21 8 −26 12 −2 2 −6 5 19 7 26 10
Scotland 42 −46 13 −52 20 2 5 −14 10 17 10 32 42
Slovakia 30 −29 4 −21 11 −8 3 −9 7 13 5 35 18
Sweden (N) 32 −43 26 −22 25 −1 1 0 3 11 6 22 37
Sweden (S) 32 −103 41 −82 30 −2 2 2 3 26 13 13 50

Deposition Chemistryc

xSO4
2− TIN

region no. sites EMEP obsd EMEP obsd

Czech Rep. (Slavkov F.) 2 −1.96 (71%) −1.95 (74%) −0.13 (16%) −0.22 (19%)
Czech Rep. (Bohemian F.) 3 −0.83 (51%) −1.38 (68%) −0.26 (15%) 0 (0%)
Finland 24 −0.05 (13%) −0.1 (36%) −0.13 (41%) −0.01 (5%)
Italy (lakes, rivers) 6 −0.62 (58%) −1.05 (58%) −0.22 (15%) −0.24 (9%)
Norway 31 −0.23 (41%) −0.09 (21%) −0.04 (7%) −0.2 (25%)
Scotland 42 −0.28 (45%) −0.8 (94%) −0.24 (26%) −0.94 (88%)
Slovakia 30 −1.09 (40%) −1.56 (54%) −0.27 (24%) −0.44 (31%)
Sweden (N) 32 −0.07 (42%) −0.1 (49%) 0.07 (−30%) 0.01 (−5%)
Sweden (S) 32 −0.32 (65%) −0.24 (56%) −0.16 (27%) 0.05 (−8%)

aCalculated as the average of values in 2008−2010 minus the average of values in 1994−1996, such that negative values indicate a decrease. xSO4
2− is

non-marine SO4
2−, TIN is total inorganic nitrogen, and ANC is acid neutralizing capacity. bΔ indicates regional mean, and σ is the standard

deviation of values for individual sites around the regional mean. Units are μequiv L−1. cUnits are g m−2 yr−1. Percentage reduction in simulated
(CLE scenario) and observed deposition is shown in parentheses (negative values indicate an increase). Data from individual sites are reported for
sites in Italy and the Czech Republic.
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In reality NO3
− concentrations over the 15-year period in many

cases did not follow the decline in nitrogen deposition. Of many
possible explanations:

1. Nitrogen saturation may have increased over the 15 years
(lower fraction of N retained).32,33

2. Forest damage from severe weather/disease/infestation
(i.e., bark beetle).34,35

3. Recovery of the forest may have promoted growth and
uptake of nitrogen.36

4. Warmer climate may have promoted uptake of nitrogen.37

Observed surface water ANC mirrored the same general
pattern of simulated ANC, with a universal tendency toward a
rising ANC in surface waters from 1995 to 2009. The ANC at
sites that have historically received high deposition inputs, and
then experienced the most pronounced reduction in anthro-
pogenic acidic deposition, recovered the most (Table 2,
Figure3e, Supporting Information Figures S6 and S7). However,
the magnitude of the rise in ANC was not so well predicted, with
many regions not showing a significant correlation between the
observed and projected changes, or showing a significant
difference in the mean change (Table 3).

Figure 3. Left: Simulated versus mean observed surface water concentrations for the years 2008−2010 at each site. A range of years was chosen as not all
sites had observations for all years of interest. Right: Change in simulated and observed surface water concentrations over the period 1995−2009. Sites
within a region have the same symbol and color, while black lines show the 1:1 relationship. For delta change in xSO4

2−, one point with a delta change of
>400 μequiv L−1 in both simulated and observed was excluded for clarity. Note the log scale in the left-hand plots, and that gran alkalinity is presented
instead of ANC at the Bohemian Forest sites (panel e and f).
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We used an ANC threshold of 20 μequiv L−1 to indicate water
quality sufficient to support viable populations of brown trout.38

Jenkins et al.17 and Wright et al.39 used ANC thresholds and
MAGIC simulations to estimate the number of sites in three
ecologically significant ANC categories in response to acid
deposition across Europe for key years (1860, 1980, 2000, and
2016). Here we used a similar approach to compare the number
of sites in the ANC categories predicted in 2009 (based on the
mean data from 2008 to 2010) to those observed in 2009 (based
on the mean data from 2008 to 2010), and assessed these against
the situation in 1995 (mean 1994−1996) (Figure 4). The
simulated and observed ANC in 2009 show very similar
classifications into the three categories.

4. DISCUSSION
Good models are the foremost tools for projecting future
changes; this is the case for making projections of future
acidification of soils and waters given alternative possible
scenarios for acid deposition. A continuing concern in using
models either to summarize our current knowledge or to assist in
making policy decisions is the level of confidence that can be
placed in the model projections. The “verification” or
“validation” of a mathematical model of a natural system is
problematic because natural systems are never closed, model
results are non-unique, and “truth” cannot be proved
absolutely.40 Model evaluation is, however, feasible when the
model is tested against observations from a range of
heterogeneous ecosystems at multiple sites, and confidence in
the models is increased if it is found to produce satisfactory
results.41 This was the premise of the current study.
The MAGIC model has been subjected to several types of

evaluations during the 30 years since its launch in 1985:

1. Compare model hindcasts with independent historical
data records of acid deposition and water chemistry, such
as the study of Larssen,42 a comparison of MAGIC
simulations with 30-years of observations from four small
calibrated catchments in Norway.

2. Compare MAGIC hindcasts with other types of observed
historical data, such as paleo-limnological data for
diatoms.43

3. Compare the results from large-scale whole ecosystem
acidification experiments with MAGIC simulations.44

To these we now add a fourth type of test: Use MAGIC to
project future water chemistry, wait 15 years, and then test if the
projections actually came true.
The prerequisite for this test is that the CLE deposition

scenario for 2010 used in the MAGIC projections did indeed
happen. For sulfur deposition this appears to be approximately
the case, but not so for nitrogen deposition. Differences in
simulated and observed deposition were attributed to the
following factors: (a) Bulk deposition was monitored at all study
sites except those in the Czech Republic (Bohemian Forest) and
Finland, where only the wet component was recorded. (b) In
central Europe (Czech Republic and Slovakia) and northern
Italy, marine inputs in deposition are minor, therefore xSO4

2−

(non-marine sulfate) is approximately equal to SO4
2−.

Fortunately most of the ANC changes in the sites studied here
have been driven by changes in SO4

2−, and heretofore nitrogen
has played a lesser role. The MAGIC model performed
particularly well at those sites where the long-term hydro-
chemical trends were driven primarily by sulfur deposition and
terrestrial geochemical (abiotic) processes. For nitrogen, refine-T
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ment to the model structure, setup, and parameterization is
required to more readily capture biological processes and
especially those processes driven by climate.45 More detail is
given on the importance of abiotic and biotic processes at site
level in the references supplied in Table 1.
Non-marine sulfur deposition was the principal cause of

acidification of the majority of surface waters in this study.39 Of
the strong acid anions, concentrations of sulfate (SO4

2−) were
commonly 3−10 times higher than that of nitrate (NO3

−). Since
the 1990s, due to effective abatement policies, it is clear that
xSO4

2− has lost its role as the dominant acidifying anion, and
NO3

− and reduced forms of nitrogen (TIN) deposition are
becoming a greater concern for all countries except Slovakia
(Figure S1).
Nonetheless, the strong declining trend in observed surface

water xSO4
2− was successfully simulated at the majority of sites

throughout Europe (Figure S2 and S3), and this is attributed to
the calibration of SO4

2− adsorption parameters based on input/
output budgets46 and valid EMEP deposition forecasts. Slight
discrepancies with the model performance were observed. For
example, simulated xSO4

2− was overpredicted as a consequence
of the possible desorption of sulfur from soil; the mismatch
between surface water xSO4

2− concentrations in the Galloway
region of Scotland was attributed to disturbance of the soil from
intensive forest management during ground preparation, tree
planting, and felling operations in catchments dominated by
forestry; and the clear increasing SO4

2− trend in the Italian lakes
(Boden Inferiore and Superiore) can be linked to the high
content of carbonate and SO4

2− minerals in the bedrock. It is
hypothesized that the increasing SO4

2− trend in the Italian lakes
results from enhanced mineral weathering induced by the direct
and indirect effects of climate change.47 Similarly, the long-term
variability in ANC of the Italian rivers is mainly driven by
weathering processes and factors influencing them (e.g., climate
change driving less snow cover in the higher portions of the
catchments and a greater export of base cations from weathering
processes.47 Such climate-induced geochemical processes were
not represented in the model.
In general, NOx deposition has played a secondary role in the

acidification of surface waters in semi-natural systems throughout
Europe, although TIN (NOx + NHy) has become the dominant
form of deposition for the majority of regions as xSO4

2−

concentrations decrease (Figure S1). Most nitrogen deposition
is retained in the terrestrial catchments at the majority of sites,
and thus leaching of NO3

− has played a lesser role in water
acidification.48,49 Simulated changes in NO3

− concentrations
from 1995 to 2010 were poorly represented by the model. This
was particularly evident in catchments where the nutrient cycle
had been disrupted as a result of unforeseen environmental
perturbations (extreme climatic conditions, disease or infesta-
tion).
Our study provides strong evidence that the MAGIC model is

a robust management tool capable of forecasting changes in
surface water chemistry, primarily driven by geochemical
processes, in response to changes in acid deposition following
the implementation of abatement technologies. This multi-site
evaluation confirms the value of dynamic modeling studies for
integrating and synthesizing scientific understanding of natural
resources management and future policy development. The
credible prediction of the future recovery trajectories of sensitive
surface waters is a key element in political decisions regarding
revisions to existing protocols and potential new protocols to the
LRTAP Convention. However, despite a number of refinements,
adjustments, and extensive testing of the MAGIC model prior to
the RECOVER:2010 project, this evaluation has demonstrated a
clear need to improve the representation of climate driven
processes responsible for the simulation of nutrients in surface
waters.
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