19 research outputs found

    The Pedagogical Potential of Infrared Cameras in Biology Education

    No full text
    Thermal imagery provides new opportunities to study concepts and processes in biology. Examples include using infrared (IR) cameras in educational activities to explore energy transfer and transformation in human physiology, animal thermoregulation, and plant metabolism. The user-friendly and visually intuitive nature of IR technology is well suited to the study of rapidly changing temperatures on biological surfaces, due to such energy transfers. IR cameras are therefore potentially helpful pedagogical tools for approaching the Energy and Matter crosscutting concept in the Life Sciences discipline of the Next Generation Science Standards

    Bridging the Educational Research-Teaching Practice Gap: Foundations for assessing and developing biochemistry students’ visual literacy

    No full text
    External representations (ERs), such as diagrams, animations, and dynamic models are vital tools for communicating and constructing knowledge in biochemistry. To build a meaningful understanding of structure, function, and process, it is essential that students become visually literate by mastering key cognitive skills that are essential for interpreting and visualizing ERs. In this article, first we describe a model of seven factors influencing students’ ability to learn from ERs. Second, we use this model and relevant literature to identify eight cognitive skills central to visual literacy in biochemistry. Third, we present simple examples of tasks as a foundation for designing more sophisticated and complex items for assessing and developing students’ visual literacy. We conclude that visual literacy is fundamental to the development of sound conceptual understanding and it is crucial to develop visual skills in parallel with meaningful learning outcomes in all biochemistry curricula.All issues of BAMBED become freely available after a two-year hold</p

    Bridging the Gap Bridging the Educational Research-Teaching Practice Gap FOUNDATIONS FOR ASSESSING AND DEVELOPING BIOCHEMISTRY STUDENTS ’ VISUAL LITERACY

    No full text
    External representations (ERs), such as diagrams, animations, and dynamic models are vital tools for communicating and constructing knowledge in biochemistry. To build a meaningful understanding of structure, function, and process, it is essential that students become visually literate by mastering key cognitive skills that are essential for interpreting and visualizing ERs. In this article, first we describe a model of seven factors influencing students ’ ability to learn from ERs. Second, we use this model and relevant literature to identify eight cognitive skills central to visual literacy in biochemistry. Third, we present simple examples of tasks as a foundation for designing more sophisticated and complex items for assessing and developing students ’ visual literacy. We conclude that visual literacy is fundamental to the development of sound conceptual understanding and it is crucial to develop visual skills in parallel with meaningful learning outcomes in all biochemistry curricula

    Thermal cameras as a semiotic resource for inquiry in a South African township school context

    Get PDF
    Inquiry-based approaches to science education are central to recent South African primary and secondary school curricula, but have been found challenging to adopt in disadvantaged township contexts. It is therefore important to find ways of introducing inquiry-based approaches, where pupils are encouraged to investigate phenomena they are interested in and to engage in true dialogue, as opposed to teacher-led triadic dialogue. We typically experience thermal phenomena through the sense of touch, but infrared (IR) cameras provide an additional opportunity to experience heat-related phenomena through the visual sense. Previously, in a Swedish context, we have found that hand-held IR cameras allow for strong pedagogical affordances and inspire pupils to engage in inquiry in the area of thermal science. In the present case study, grade 7 and 8 pupils (13–14 years old) in two South African township schools were introduced to IR cameras during predict-observe-explain (POE) exercises on heat conduction. The results revealed that if pupils had a sufficient conceptual understanding of heat conduction beforehand, they were capable of engaging in true dialogue in relation to the exercises and interpreting the thermal camera visual imagery. However, if pupils did not show such understanding, it was tempting for them and the facilitator to resort to triadic dialogue

    http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-84976 An Interactive and Multi-sensory Learning Environment for Nano Education

    No full text
    Abstract. Swift scientific advances in the area of nanoscience suggest that nanotechnology will play an increasingly important role in our everyday lives. Thus, knowledge of the principles underlying such technologies will inevitably be required to ensure a skilled industrial workforce. In this paper we describe the development of a virtual educational environment that allows for various direct interactive experiences and communication of nanophenomena to pupils and citizens, ranging from desktops to immersive and multi-sensory platforms. At the heart of the architecture is a nanoparticle simulator, which simulates effects such as short-range interaction, flexing of nanotubes and collisions with the solvent. The environment allows the user to interact with the particles to examine their behaviour related to fundamental science concepts

    Exploring relationships between students’ interaction and learning with a haptic virtual biomolecular model

    No full text
    This study explores tertiary students’ interaction with a haptic virtual model representing the specific binding of two biomolecules, a core concept in molecular life science education. Twenty students assigned to a haptics (experimental) or no-haptics (control) condition performed a “docking” task where users sought the most favourable position between a ligand and protein molecule, while students’ interactions with the model were logged. Improvement in students’ understanding of biomolecular binding was previously measured by comparing written responses to a target conceptual question before and after interaction with the model. A log-profiling tool visualized students’ movement of the ligand molecule during the docking task. Multivariate parallel coordinate analyses explored any relationships in the entire student data set. The haptics group produced a tighter constellation of collected final docked ligand positions in comparison with no-haptics students, coupled to docking profiles that depicted a more fine-tuned ligand traversal. Students in the no-haptics condition employed double the amount of interactive behaviours concerned with switching between different visual chemical representations offered by the model. In the no-haptics group, this visually intense processing was synonymous with erroneously ‘fitting’ the ligand closer distances to the protein surface. Students who showed higher learning gains tended to engage fewer visual representational switches, and were from the haptics group, while students with a higher spatial ability also engaged fewer visual representational switches, irrespective of assigned condition. From an information-processing standpoint, visual and haptic coordination may offload the visual pathway by placing less strain on visual working memory. From an embodied cognition perspective, visual and tactile sensorimotor interactions in the macroworld may provide access to constructing knowledge about submicroscopic phenomena. The results have cognitive and practical implications for the use of multimodal virtual reality technologies in educational contexts.VisMolL

    An Interactive and Multi-sensory Learning Environment for Nano Education

    No full text
    This book constitutes the refereed proceedings of the 7th International Conference on Haptic and Audio Interaction Design, HAID 2012, held in Lund, Sweden, in August 2012. The 15 full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on haptics and audio in navigation, supporting experiences and activities, object and interface, test and evaluation.NanoSi

    Visualising energy transformations in electric circuits with infrared cameras

    No full text
    Increasingly affordable visualisation technology brings exciting opportunities for making the invisible appear visible. This can support the teaching and learning of many challenging physics concepts. Hand-held infrared (IR) cameras offer real-time instant visual feedback of temperature changes that correspond to energy transfer and transformations
    corecore