736 research outputs found

    Exact two-component TDDFT with simple two-electron picture-change corrections: X-ray absorption spectra near L- and M-edges of four-component quality at two-component cost

    Get PDF
    X-ray absorption spectroscopy (XAS) has gained popularity in recent years as it probes matter with high spatial and elemental sensitivity. However, the theoretical modelling of XAS is a challenging task since XAS spectra feature a fine structure due to scalar (SC) and spin-orbit (SO) relativistic effects, in particular near L and M absorption edges. While full four-component (4c) calculations of XAS are nowadays feasible, there is still interest in developing approximate relativistic methods that enable XAS calculations at the two-component (2c) level while maintaining the accuracy of the parent 4c approach. In this article we present theoretical and numerical insights into two simple yet accurate 2c approaches based on an (extended) atomic mean-field exact two-component Hamiltonian framework, (e)amfX2C, for the calculation of XAS using linear eigenvalue and damped-response time-dependent density functional theory (TDDFT). In contrast to the commonly used one-electron X2C (1eX2C) Hamiltonian, both amfX2C and eamfX2C account for the SC and SO two-electron and exchange-correlation picture-change (PC) effects that arise from the X2C transformation. As we demonstrate on L- and M-edge XAS spectra of transition metal and actinide compounds, the absence of PC corrections in the 1eX2C approximation results in a substantial overestimatation of SO splittings, whereas (e)amfX2C Hamiltonians reproduce all essential spectral features such as shape, position, and SO splitting of the 4c references in excellent agreement, while offering significant computational savings. Therefore, the (e)amfX2C PC correction models presented here constitute reliable relativistic 2c quantum-chemical approaches for modelling XAS

    Complex gunshot injury to the heart as a consequence of suicide attempt in a schizophrenic patient

    Get PDF
    AbstractIntroductionSelf-inflicted gunshot injury to the heart is uncommon in Western Europe countries. However it is considered to have a high mortality through cardiac tamponade or exsanguination and concomitant chest or abdominal cavity injury.Case presentationWe present a 39-year-old schizophrenic woman who attempted suicide with the aid of a 6.35mm caliber handgun, after self-discontinuing of antipsychotic treatment. Lower third of sternum, right heart atrium and ventricle and inferior caval vein were hit by the bullet which consequently got lodged in the right paravertebral muscle mass at the lower thoracic vertebral level. As she was hemodynamically unstable due to hemopericardium and a huge right hemothorax, she underwent emergent surgery. Heart and inferior vena caval injuries were repaired on extracorporeal circulation. The postoperative course was uneventful and she was transferred to a psychiatric facility on the 7th postoperative day. One year after the surgery she is well, compliant to antipsychotic medications and on periodic follow-up by psychiatrists.ConclusionThis case represents management of complex self-inflicted gunshot cardiac injury in a schizophrenic patient who discontinued antipsychotic medication. Liaison between themedical rescue service and high level trauma center essentially reduced injury-to-surgery time. Complex heart injury was successfully repaired on extracorporeal circulation

    The role of electronic correlation in the Si(100) reconstruction: a quantum Monte Carlo study

    Get PDF
    Recent low-temperature scanning tunneling experiments have challenged the generally accepted picture of buckled silicon dimers as the ground state reconstruction of the Si(100) surface. Together with the symmetric dimer model of the surface suggested by quantum chemistry calculations on small clusters, these findings question our general understanding of electronic correlations at surfaces and its proper description within density functional theory. We present quantum Monte Carlo calculations on large cluster models of the symmetric and buckled surface, and conclude that buckling remains energetically more favorable even when the present-day best treatment of electronic correlation is employed.Comment: 5 pages, Revtex, 10 figure

    Observations of Microwave Continuum Emission from Air Shower Plasmas

    Full text link
    We investigate a possible new technique for microwave measurements of ultra-high energy cosmic ray (UHECR) extensive air showers which relies on detection of expected continuum radiation in the microwave range, caused by free-electron collisions with neutrals in the tenuous plasma left after the passage of the shower. We performed an initial experiment at the AWA (Argonne Wakefield Accelerator) laboratory in 2003 and measured broadband microwave emission from air ionized via high energy electrons and photons. A follow-up experiment at SLAC (Stanford Linear Accelerator Center) in summer of 2004 confirmed the major features of the previous AWA observations with better precision and made additional measurements relevant to the calorimetric capabilities of the method. Prompted by these results we built a prototype detector using satellite television technology, and have made measurements indicating possible detection of cosmic ray extensive air showers. The method, if confirmed by experiments now in progress, could provide a high-duty cycle complement to current nitrogen fluorescence observations of UHECR, which are limited to dark, clear nights. By contrast, decimeter microwave observations can be made both night and day, in clear or cloudy weather, or even in the presence of moderate precipitation.Comment: 15 pages, 13 figure

    Radio-Frequency Measurements of Coherent Transition and Cherenkov Radiation: Implications for High-Energy Neutrino Detection

    Full text link
    We report on measurements of 11-18 cm wavelength radio emission from interactions of 15.2 MeV pulsed electron bunches at the Argonne Wakefield Accelerator. The electrons were observed both in a configuration where they produced primarily transition radiation from an aluminum foil, and in a configuration designed for the electrons to produce Cherenkov radiation in a silica sand target. Our aim was to emulate the large electron excess expected to develop during an electromagnetic cascade initiated by an ultra high-energy particle. Such charge asymmetries are predicted to produce strong coherent radio pulses, which are the basis for several experiments to detect high-energy neutrinos from the showers they induce in Antarctic ice and in the lunar regolith. We detected coherent emission which we attribute both to transition and possibly Cherenkov radiation at different levels depending on the experimental conditions. We discuss implications for experiments relying on radio emission for detection of electromagnetic cascades produced by ultra high-energy neutrinos.Comment: updated figure 10; fixed typo in equation 2.2; accepted by PR
    • …
    corecore