12 research outputs found

    Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis.

    Get PDF
    AIMS: Because low-grade inflammation may play a role in the pathogenesis of coronary heart disease (CHD), and pro-inflammatory cytokines govern inflammatory cascades, this study aimed to assess the associations of several pro-inflammatory cytokines and CHD risk in a new prospective study, including meta-analysis of prospective studies. METHODS AND RESULTS: Interleukin-6 (IL-6), IL-18, matrix metalloproteinase-9 (MMP-9), soluble CD40 ligand (sCD40L), and tumour necrosis factor-α (TNF-α) were measured at baseline in a case-cohort study of 1514 participants and 833 incident CHD events within population-based prospective cohorts at the Danish Research Centre for Prevention and Health. Age- and sex-adjusted hazard ratios (HRs) for CHD per 1-SD higher log-transformed baseline levels were: 1.37 (95% CI: 1.21-1.54) for IL-6, 1.26 (1.11-1.44) for IL-18, 1.30 (1.16-1.46) for MMP-9, 1.01 (0.89-1.15) for sCD40L, and 1.13 (1.01-1.27) for TNF-α. Multivariable adjustment for conventional vascular risk factors attenuated the HRs to: 1.26 (1.08-1.46) for IL-6, 1.12 (0.95-1.31) for IL-18, 1.21 (1.05-1.39) for MMP-9, 0.93 (0.78-1.11) for sCD40L, and 1.14 (1.00-1.31) for TNF-α. In meta-analysis of up to 29 population-based prospective studies, adjusted relative risks for non-fatal MI or CHD death per 1-SD higher levels were: 1.25 (1.19-1.32) for IL-6; 1.13 (1.05-1.20) for IL-18; 1.07 (0.97-1.19) for MMP-9; 1.07 (0.95-1.21) for sCD40L; and 1.17 (1.09-1.25) for TNF-α. CONCLUSIONS: Several different pro-inflammatory cytokines are each associated with CHD risk independent of conventional risk factors and in an approximately log-linear manner. The findings lend support to the inflammation hypothesis in vascular disease, but further studies are needed to assess causality.This work was supported by a grant from the British Heart Foundation (RG/08/014), the U.K. Medical Research Council, and the U.K. National Institute of Health Research Cambridge Biomedical Research Centre.This is the accepted manuscript. The final version is available from OUP at http://eurheartj.oxfordjournals.org/content/35/9/578

    Statin pretreatment and risk of in-hospital atrial fibrillation among patients undergoing cardiac surgery: a collaborative meta-analysis of 11 randomized controlled trials

    Get PDF
    Aims Statin pretreatment in patients undergoing cardiac surgery is understood to prevent postoperative atrial fibrillation (AF). However, this is based on observational and limited randomized trial evidence, resulting in uncertainty about any genuine anti-arrhythmic benefits of these agents in this setting.We therefore aimed to quantify precisely the association between statin pretreatment and postoperative AF among patients undergoing cardiac surgery. Methods and results A detailed search of MEDLINE and PubMed databases (1st January 1996 to 31st July 2012)was conducted, followed by a review of the reference lists of published studies and correspondence with trial investigators to obtain individual– participant data for meta-analysis. Evidence was combined across prospective, randomized clinical trials that compared the risk of postoperative AF among individuals randomized to statin pretreatment or placebo/control medication before elective cardiac surgery. Postoperative AF was defined as episodes of AF lasting ≥5 min. Overall, 1105 participants from 11 trials were included; of them, 552 received statin therapy preoperatively. Postoperative AF occurred in 19% of these participants when compared with 36% of those not treated with statins (odds ratio 0.41, 95% confidence interval 0.31–0.54, P , 0.00001, using a random-effects model). Atrial fibrillation prevention by statin pretreatmentwas consistent across different subgroups. Conclusion Short-term statin pretreatment may reduce the risk of postoperative AF among patients undergoing cardiac surgery

    Markers of Dysglycaemia and Risk of Coronary Heart Disease in People without Diabetes: Reykjavik Prospective Study and Systematic Review

    Get PDF
    BACKGROUND: Associations between circulating markers of dysglycaemia and coronary heart disease (CHD) risk in people without diabetes have not been reliably characterised. We report new data from a prospective study and a systematic review to help quantify these associations. METHODS AND FINDINGS: Fasting and post-load glucose levels were measured in 18,569 participants in the population-based Reykjavik study, yielding 4,664 incident CHD outcomes during 23.5 y of mean follow-up. In people with no known history of diabetes at the baseline survey, the hazard ratio (HR) for CHD, adjusted for several conventional risk factors, was 2.37 (95% CI 1.79-3.14) in individuals with fasting glucose > or = 7.0 mmol/l compared to those or = 7 mmol/l at baseline were excluded, relative risks for CHD, adjusted for several conventional risk factors, were: 1.06 (1.00-1.12) per 1 mmol/l higher fasting glucose (23 cohorts, 10,808 cases, 255,171 participants); 1.05 (1.03-1.07) per 1 mmol/l higher post-load glucose (15 cohorts, 12,652 cases, 102,382 participants); and 1.20 (1.10-1.31) per 1% higher HbA(1c) (9 cohorts, 1639 cases, 49,099 participants). CONCLUSIONS: In the Reykjavik Study and a meta-analysis of other Western prospective studies, fasting and post-load glucose levels were modestly associated with CHD risk in people without diabetes. The meta-analysis suggested a somewhat stronger association between HbA(1c) levels and CHD risk

    HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials.

    Get PDF
    BACKGROUND: Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target. METHODS: We used single nucleotide polymorphisms in the HMGCR gene, rs17238484 (for the main analysis) and rs12916 (for a subsidiary analysis) as proxies for HMGCR inhibition by statins. We examined associations of these variants with plasma lipid, glucose, and insulin concentrations; bodyweight; waist circumference; and prevalent and incident type 2 diabetes. Study-specific effect estimates per copy of each LDL-lowering allele were pooled by meta-analysis. These findings were compared with a meta-analysis of new-onset type 2 diabetes and bodyweight change data from randomised trials of statin drugs. The effects of statins in each randomised trial were assessed using meta-analysis. FINDINGS: Data were available for up to 223 463 individuals from 43 genetic studies. Each additional rs17238484-G allele was associated with a mean 0·06 mmol/L (95% CI 0·05-0·07) lower LDL cholesterol and higher body weight (0·30 kg, 0·18-0·43), waist circumference (0·32 cm, 0·16-0·47), plasma insulin concentration (1·62%, 0·53-2·72), and plasma glucose concentration (0·23%, 0·02-0·44). The rs12916 SNP had similar effects on LDL cholesterol, bodyweight, and waist circumference. The rs17238484-G allele seemed to be associated with higher risk of type 2 diabetes (odds ratio [OR] per allele 1·02, 95% CI 1·00-1·05); the rs12916-T allele association was consistent (1·06, 1·03-1·09). In 129 170 individuals in randomised trials, statins lowered LDL cholesterol by 0·92 mmol/L (95% CI 0·18-1·67) at 1-year of follow-up, increased bodyweight by 0·24 kg (95% CI 0·10-0·38 in all trials; 0·33 kg, 95% CI 0·24-0·42 in placebo or standard care controlled trials and -0·15 kg, 95% CI -0·39 to 0·08 in intensive-dose vs moderate-dose trials) at a mean of 4·2 years (range 1·9-6·7) of follow-up, and increased the odds of new-onset type 2 diabetes (OR 1·12, 95% CI 1·06-1·18 in all trials; 1·11, 95% CI 1·03-1·20 in placebo or standard care controlled trials and 1·12, 95% CI 1·04-1·22 in intensive-dose vs moderate dose trials). INTERPRETATION: The increased risk of type 2 diabetes noted with statins is at least partially explained by HMGCR inhibition. FUNDING: The funding sources are cited at the end of the paper

    Diabetes mellitus, fasting glucose, and risk of cause-specific death.

    Get PDF
    BACKGROUND: The extent to which diabetes mellitus or hyperglycemia is related to risk of death from cancer or other nonvascular conditions is uncertain. METHODS: We calculated hazard ratios for cause-specific death, according to baseline diabetes status or fasting glucose level, from individual-participant data on 123,205 deaths among 820,900 people in 97 prospective studies. RESULTS: After adjustment for age, sex, smoking status, and body-mass index, hazard ratios among persons with diabetes as compared with persons without diabetes were as follows: 1.80 (95% confidence interval [CI], 1.71 to 1.90) for death from any cause, 1.25 (95% CI, 1.19 to 1.31) for death from cancer, 2.32 (95% CI, 2.11 to 2.56) for death from vascular causes, and 1.73 (95% CI, 1.62 to 1.85) for death from other causes. Diabetes (vs. no diabetes) was moderately associated with death from cancers of the liver, pancreas, ovary, colorectum, lung, bladder, and breast. Aside from cancer and vascular disease, diabetes (vs. no diabetes) was also associated with death from renal disease, liver disease, pneumonia and other infectious diseases, mental disorders, nonhepatic digestive diseases, external causes, intentional self-harm, nervous-system disorders, and chronic obstructive pulmonary disease. Hazard ratios were appreciably reduced after further adjustment for glycemia measures, but not after adjustment for systolic blood pressure, lipid levels, inflammation or renal markers. Fasting glucose levels exceeding 100 mg per deciliter (5.6 mmol per liter), but not levels of 70 to 100 mg per deciliter (3.9 to 5.6 mmol per liter), were associated with death. A 50-year-old with diabetes died, on average, 6 years earlier than a counterpart without diabetes, with about 40% of the difference in survival attributable to excess nonvascular deaths. CONCLUSIONS: In addition to vascular disease, diabetes is associated with substantial premature death from several cancers, infectious diseases, external causes, intentional self-harm, and degenerative disorders, independent of several major risk factors. (Funded by the British Heart Foundation and others.)

    Glycated hemoglobin measurement and prediction of cardiovascular disease.

    No full text
    IMPORTANCE: The value of measuring levels of glycated hemoglobin (HbA1c) for the prediction of first cardiovascular events is uncertain. OBJECTIVE: To determine whether adding information on HbA1c values to conventional cardiovascular risk factors is associated with improvement in prediction of cardiovascular disease (CVD) risk. DESIGN, SETTING, AND PARTICIPANTS: Analysis of individual-participant data available from 73 prospective studies involving 294,998 participants without a known history of diabetes mellitus or CVD at the baseline assessment. MAIN OUTCOMES AND MEASURES: Measures of risk discrimination for CVD outcomes (eg, C-index) and reclassification (eg, net reclassification improvement) of participants across predicted 10-year risk categories of low (<5%), intermediate (5% to <7.5%), and high (≥ 7.5%) risk. RESULTS: During a median follow-up of 9.9 (interquartile range, 7.6-13.2) years, 20,840 incident fatal and nonfatal CVD outcomes (13,237 coronary heart disease and 7603 stroke outcomes) were recorded. In analyses adjusted for several conventional cardiovascular risk factors, there was an approximately J-shaped association between HbA1c values and CVD risk. The association between HbA1c values and CVD risk changed only slightly after adjustment for total cholesterol and triglyceride concentrations or estimated glomerular filtration rate, but this association attenuated somewhat after adjustment for concentrations of high-density lipoprotein cholesterol and C-reactive protein. The C-index for a CVD risk prediction model containing conventional cardiovascular risk factors alone was 0.7434 (95% CI, 0.7350 to 0.7517). The addition of information on HbA1c was associated with a C-index change of 0.0018 (0.0003 to 0.0033) and a net reclassification improvement of 0.42 (-0.63 to 1.48) for the categories of predicted 10-year CVD risk. The improvement provided by HbA1c assessment in prediction of CVD risk was equal to or better than estimated improvements for measurement of fasting, random, or postload plasma glucose levels. CONCLUSIONS AND RELEVANCE: In a study of individuals without known CVD or diabetes, additional assessment of HbA1c values in the context of CVD risk assessment provided little incremental benefit for prediction of CVD risk
    corecore