947 research outputs found

    A multi-band AGN-SFG classifier for extragalactic radio surveys using machine learning

    Get PDF
    Extragalactic radio continuum surveys play an increasingly more important role in galaxy evolution and cosmology studies. While radio galaxies and radio quasars dominate at the bright end, star-forming galaxies (SFGs) and radio-quiet Active Galactic Nuclei (AGNs) are more common at fainter flux densities. Our aim is to develop a machine learning classifier that can efficiently and reliably separate AGNs and SFGs in radio continuum surveys. We perform supervised classification of SFGs vs AGNs using the Light Gradient Boosting Machine (LGBM) on three LOFAR Deep Fields (Lockman Hole, Bootes and ELAIS-N1), which benefit from a wide range of high-quality multi-wavelength data and classification labels derived from extensive spectral energy distribution (SED) analyses. Our trained model has a precision of 0.92(0.01) and a recall of 0.87(0.02) for SFGs. For AGNs, the model has slightly worse performance, with a precision of 0.87(0.02) and recall of 0.78(0.02). These results demonstrate that our trained model can successfully reproduce the classification labels derived from detailed SED analysis. The model performance decreases towards higher redshifts, mainly due to smaller training sample sizes. To make the classifier more adaptable to other radio galaxy surveys, we also investigate how our classifier performs with a poorer multi-wavelength sampling of the SED. In particular, we find that the far-infrared (FIR) and radio bands are of great importance. We also find that higher S/N in some photometric bands leads to a significant boost in the model's performance. In addition to using the 150 MHz radio data, our model can also be used with 1.4 GHz radio data. Converting 1.4 GHz to 150 MHz radio data reduces performance by about 4% in precision and 3% in recall. The final trained model is publicly available at https://github.com/Jesper-Karsten/MBASCComment: 14 pages 9 figures Accepted for publication in A&

    The Nature of Hyperluminous Infrared Galaxies

    Get PDF
    Context. Hyperluminous infrared galaxies (HLIRGs) are shown to have been more abundant in early epochs. The small samples used in earlier studies are not sufficient to draw robust statistical conclusions regarding the physical properties and the power sources of these extreme infrared (IR) bright galaxies. Aims. We make use of multi-wavelength data of a large HLIRG sample to derive the main physical properties, such as stellar mass, star formation rate (SFR), volume density, and the contribution to the cosmic stellar mass density and the cosmic SFR density. We also study the black hole (BH) growth rate and its relationship with the SFR of the host galaxy. Methods. We selected 526 HLIRGs in three deep fields (Boötes, Lockman-Hole, and ELAIS-N1) and adopted two spectral energy distribution (SED) fitting codes: CIGALE, which assumes energy balance, and CYGNUS, which is based on radiative transfer models and does not adopt an energy balance principle. We used two different active galactic nucleus (AGN) models in CIGALE and three AGN models in CYGNUS to compare results that were estimated using different SED fitting codes and a range of AGN models. Results. The stellar mass, total IR luminosity, and AGN luminosity agree well among different models, with a typical median offset of 0.1 dex. The SFR estimates show the largest dispersions (up to 0.5 dex). This dispersion has an impact on the subsequent analysis, which may suggest that the previous contradictory results could partly have been due to the different choices in methods. HLIRGs are ultra-massive galaxies, with 99% of them having stellar masses larger than 1011 M⊙. Our results reveal a higher space density of ultra-massive galaxies than what was found by previous surveys or predicted via simulations. We find that HLIRGs contribute more to the cosmic SFR density as redshift increases. In terms of BH growth, the two SED fitting methods provide different results. We can see a clear trend in whereby SFR decreases as AGN luminosity increases when using CYGNUS estimates. This may possibly imply quenching by AGN in this case, whereas this trend is much weaker when using CIGALE estimates. This difference is also influenced by the dispersion between SFR estimates obtained by the two codes

    The LOFAR Two-metre Sky Survey: the radio view of the cosmic star formation history

    Get PDF
    © 2023 Oxford University Press. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stad1602We present a detailed study of the cosmic star formation history over 9090 per cent of cosmic time (0≲z≲40\lesssim z\lesssim4), using deep, radio continuum observations that probe star formation activity independent of dust. The Low Frequency Array Two Metre Sky Survey has imaged three well-studied extragalactic fields, Elais-N1, Bo\"otes and the Lockman Hole, reaching ∼20 μJy/beam\sim20\,\mu\rm{Jy/beam} rms sensitivity at 150 MHz150\,\rm{MHz}. The availability of high-quality ancillary data from ultraviolet to far-infrared wavelengths has enabled accurate photometric redshifts and the robust separation of radio-bright AGN from their star-forming counterparts. We capitalise on this unique combination of deep, wide fields and robustly-selected star-forming galaxies to construct radio luminosity functions and derive the cosmic star formation rate density. We carefully constrain and correct for scatter in the L150 MHz−SFRL_{150\,\rm{MHz}}-\rm{SFR} relation, which we find to be ∼0.3 dex\sim0.3\,\rm{dex}. Our derived star formation rate density lies between previous measurements at all redshifts studied. We derive higher star formation rate densities between z∼0z\sim0 and z∼3z\sim3 than are typically inferred from short wavelength emission; at earlier times, this discrepancy is reduced. Our measurements are generally in good agreement with far-infrared and radio-based studies, with small offsets resulting from differing star formation rate calibrations.Peer reviewe

    Cosmic evolution of FRI and FRII sources out to z=2.5

    Full text link
    Radio-loud active galactic nuclei (RLAGN) play an important role in the evolution of galaxies through the effects on their environment. The two major morphological classes are core-bright (FRI) and edge-bright (FRII) sources. With the LOw-Frequency ARray (LOFAR) we compare the FRI and FRII evolution down to lower flux densities and with larger samples than before with the aim to examine the cosmic space density evolution for FRIs and FRIIs by analyzing their space density evolution between L_150~10^24.5 W/Hz and L_150~10^28.5 W/Hz and up to z=2.5. We construct radio luminosity functions (RLFs) from FRI and FRII catalogues based on recent data from LOFAR at 150MHz to study the space densities as a function of radio luminosity and redshift. To partly correct for selection biases and completeness, we simulate how sources appear at a range of redshifts. We report a space density enhancement from low to high redshift for FRI and FRII sources brighter than L_150~10^27 W/Hz. This is possibly related to the higher gas availability in the earlier denser universe. The constant FRI/FRII space density ratio evolution as a function of radio luminosity and redshift in our results suggests that the jet-disruption of FRIs might be primarily caused by events occurring on scales within the host galaxy, rather than being driven by changes in the overall large-scale environment. Remaining selection biases in our results also highlight the need to resolve more sources at angular scales below 40 arcsec and therefore strengthens the motivation for the further development and automation of the calibration and imaging pipeline of LOFAR data to produce images at sub-arcsecond resolution

    LOFAR Properties of SILVERRUSH Lya emitter candidates in the ELAIS-N1 Field

    Get PDF
    © 2020 ESOLyman alpha emitters (LAEs) in the Epoch of Reionization (EoR) offer valuable probes of early galaxy evolution and the process of reionization; however, the exact evolution of their abundance and the nature of their emission remain open questions. We combine samples of 229 and 349 LAE candidates at z=5.7z=5.7 and z=6.6,z=6.6, respectively, from the SILVERRUSH narrowband survey with deep Low Frequency Array (LOFAR) radio continuum observations in the ELAIS-N1 field to search for radio galaxies in the EoR and study the low-frequency radio properties of z≳5.7z\gtrsim5.7 LAE emitters. Our LOFAR observations reach an unprecedented noise level of ∼20 μ\sim20\,\muJy beam−1^{-1} at 150MHz, and we detect five candidate LAEs at >5σ>5\sigma significance. Based on detailed spectral energy distribution modelling of independent multi-wavelength observations, we conclude that these sources are likely [OII] emitters at z=1.47z=1.47, yielding no reliable z≳5.7z\gtrsim5.7 radio galaxy candidates. We examine the 111 z=5.7z=5.7 and z=6.6z=6.6 LAE candidates from our panchromatic photometry catalogue that are undetected by LOFAR, finding contamination rates of 81-92% for the z=5.7z=5.7 and z=6.6z=6.6 subset of the LAE candidate samples. This subset is biased towards brighter magnitudes and redder near-infrared colours. The contamination rates of the full sample will therefore likely be lower than the reported values. Contamination is lowered significantly through constraints on the near-infrared colours, highlighting the need for infrared observations to robustly identify bright LAEs in narrowband surveys. Finally, the stacking of radio continuum observations for the robust LAE samples yields 2σ\sigma upper limits on radio luminosity of 8.2×\times1023^{23} and 8.7×\times1023^{23} W Hz−1^{-1} at z=5.7z=5.7 and 6.66.6, respectively, corresponding to limits on their median star-formation rates of $Peer reviewe

    The LOFAR Two-metre Sky Survey Deep Fields: A new analysis of low-frequency radio luminosity as a star-formation tracer in the Lockman Hole region

    Get PDF
    We have exploited LOFAR deep observations of the Lockman Hole field at 150 MHz to investigate the relation between the radio luminosity of star-forming galaxies (SFGs) and their star-formation rates (SFRs), as well as its dependence on stellar mass and redshift. The adopted source classification, SFRs, and stellar masses are consensus estimates based on a combination of four different spectral energy distribution fitting methods. We note a flattening of the radio spectra of a substantial minority of sources below ∼1.4 GHz. Such sources have thus a lower `radio-loudness' level at 150 MHz than expected from extrapolations from 1.4 GHz using the average spectral index. We found a weak trend towards a lower SFR/L150 MHz ratio for higher stellar mass, M⋆. We argue that such a trend may account for most of the apparent redshift evolution of the L150 MHz/SFR ratio, in line with previous work. Our data indicate a weaker evolution than found by some previous analyses. We also find a weaker evolution with redshift of the specific SFR than found by several (but not all) previous studies. Our radio selection provides a view of the distribution of galaxies in the SFR-M⋆ plane complementary to that of optical and near-IR selection. It suggests a higher uniformity of the star-formation history of galaxies than implied by some analyses of optical and near-IR data. We have derived luminosity functions at 150 MHz of both SFGs and radio-quiet (RQ) AGN at various redshifts. Our results are in very good agreement with the T-RECS simulations and with literature estimates. We also present explicit estimates of SFR functions of SFGs and RQ AGN at several redshifts derived from our radio survey data

    The LOFAR Two-metre Sky Survey: Deep Fields: : II. The ELAIS-N1 LOFAR deep field

    Get PDF
    © ESO 2021.This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1051/0004-6361/202038828The LOFAR Two-metre Sky Survey (LoTSS) will cover the full northern sky and, additionally, aims to observe the LoTSS deep fields to a noise level of ~10 microJy/bm over several tens of square degrees in areas that have the most extensive ancillary data. This paper presents the ELAIS-N1 deep field, the deepest of the LoTSS deep fields to date. With an effective observing time of 163.7 hours, it reaches a root mean square (RMS) noise level below 20 microJy/bm in the central region (and below 30 microJy/bm over 10 square degrees). The resolution is 6 arcsecs and 84862 radio sources were detected in the full area (68 sq. deg.) with 74127 sources in the highest quality area at less than 3 degrees from the pointing centre. The observation reaches a sky density of more than 5000 sources per sq. deg. in the central ~5 sq. deg. region. We present the calibration procedure, which addresses the special configuration of some observations and the extended bandwidth covered (115 to 177 MHz; central frequency 146.2 MHz) compared to standard LoTSS. We also describe the methods used to calibrate the flux density scale using cross-matching with sources detected by other radio surveys in the literature. We find the flux density uncertainty related to the flux density scale to be ~6.5%. By studying the variations of the flux density measurements between different epochs, we show that relative flux density calibration is reliable out to about a 3 degree radius, but that additional flux density uncertainty is present for all sources at about the 3 per cent level; this is likely to be associated with residual calibration errors, and is shown to be more significant in datasets with poorer ionosphere conditions. We also provide intra-band spectral indices, which can be useful to detect sources with unusual spectral properties. The final uncertainty in the flux densities is estimated to be ~10% for ELAIS-N1.Peer reviewe

    LOFAR Deep Fields : Probing a broader population of polarized radio galaxies in ELAIS-N1

    Get PDF
    This paper is part of the 1st data release of the LoTSS Deep Fields. © 2020 The European Southern Observatory (ESO).We present deep polarimetric observations of the European Large Area ISO Survey-North 1 (ELAIS-N1) field using the Low Frequency Array (LOFAR) at 114.9-177.4 MHz. The ELAIS-N1 field is part of the LOFAR Two-metre Sky Survey deep fields data release I. For six eight-hour observing epochs, we align the polarization angles and stack the 20"-resolution Stokes QQ, UU-parameter data cubes. This produces a 16 deg2^2 image with 1σQU\sigma_{\rm QU} sensitivity of 26 μ\muJy/beam in the central area. In this paper, we demonstrate the feasibility of the stacking technique, and we generate a catalog of polarized sources in ELAIS-N1 and their associated Faraday rotation measures (RMs). While in a single-epoch observation we detect three polarized sources, this number increases by a factor of about three when we consider the stacked data, with a total of ten sources. This yields a surface density of polarized sources of one per 1.6 deg2^2. The Stokes II images of three of the ten detected polarized sources have morphologies resembling those of FR I radio galaxies. This represents a greater fraction of this type of source than previously found, which suggests that more sensitive observations may help with their detection.Peer reviewe

    The bright end of the infrared luminosity functions and the abundance of hyperluminous infrared galaxies

    Get PDF
    16 pages, 11 figures, accepted for publication in A&A as part of the LOFAR Deep Fields Paper Splash. © 2020 The European Southern Observatory (ESO)We provide the most accurate estimate yet of the bright end of the infrared (IR) luminosity functions (LFs) and the abundance of hyperluminous IR galaxies (HLIRGs) with IR luminosities > 10^13 L_solar, thanks to the combination of the high sensitivity, angular resolution, and large area of the LOFAR Deep Fields, which probes an unprecedented dynamic range of luminosity and volume. We cross-match Herschel sources and LOFAR sources in Bootes (8.63 deg^2), Lockman Hole (10.28 deg^2), and ELAIS-N1 (6.74 deg^2) with rms sensitivities of around 32, 22, and 20 mJy per beam, respectively. We divide the matched samples into unique and multiple categories. For the multiple matches, we de-blend the Herschel fluxes using the LOFAR positions and the 150-MHz flux densities as priors. We perform spectral energy distribution (SED) fitting, combined with multi-wavelength counterpart identifications and photometric redshift estimates, to derive IR luminosities. The depth of the LOFAR data allows us to identify highly complete (around 92% completeness) samples of bright Herschel sources with a simple selection based on the 250 micron flux density (45, 40, and 35 mJy in Bootes, Lockman Hole, and ELAIS-N1, respectively). Most of the bright Herschel sources fall into the unique category (i.e. a single LOFAR counterpart). For the multiple matches, there is excellent correspondence between the radio emission and the far-IR emission. We find a good agreement in the IR LFs with a previous study out to z around 6 which used de-blended Herschel data. Our sample gives the strongest and cleanest indication to date that the population of HLIRGs has surface densities of around 5 to 18 / deg^2 (with variations due to a combination of the applied flux limit and cosmic variance) and an uncertainty of a factor of 2. In comparison, the GALFORM semi-analytic model significantly under-predicts the abundance of HLIRGs.Peer reviewe

    Low-frequency radio spectra of submillimetre galaxies in the Lockman Hole

    Get PDF
    We investigate the radio properties of a sample of 53 sources selected at 850 μ\mum from the SCUBA-2 Cosmology Legacy Survey using new deep, low-frequency radio imaging of the Lockman Hole field from the Low Frequency Array. Combining these data with additional radio observations from the GMRT and the JVLA, we find a variety of radio spectral shapes and luminosities within our sample despite their similarly bright submillimetre flux densities. We characterise their spectral shapes in terms of multi-band radio spectral indices. Finding strong spectral flattening at low frequencies in ~20% of sources, we investigate the differences between sources with extremely flat low-frequency spectra and those with `normal' radio spectral indices. As there are no other statistically significant differences between the two subgroups of our sample as split by the radio spectral index, we suggest that any differences are undetectable in galaxy-averaged properties that we can observe with our unresolved images, and likely relate to galaxy properties that we cannot resolve, on scales ≲\lesssim 1 kpc. We attribute the observed spectral flattening in the radio to free-free absorption, proposing that those sources with significant low-frequency spectral flattening have a clumpy distribution of star-forming gas. We estimate an average spatial extent of absorbing material of at most several hundred parsecs to produce the levels of absorption observed in the radio spectra. This estimate is consistent with the highest-resolution observations of submillimetre galaxies in the literature, which find examples of non-uniform dust distributions on scales of ~100 pc, with evidence for clumps and knots in the interstellar medium. Additionally, we find two bright (> 6 mJy) submm sources undetected at all other wavelengths. We speculate that these objects may be very high redshift sources, likely residing at z > 4.Comment: 15 pages, 10 figures, accepted by A&
    • …
    corecore