35 research outputs found

    Transformations to groundwater sustainability: from individuals and pumps to communities and aquifers

    Get PDF
    If the success of agricultural intensification continues to rely on the depletion of aquifers and exploitation of (female) labour, transformations to groundwater sustainability will be impossible to achieve. Hence, the development of new groundwater imaginaries, based on alternative ways of organizing society-water relations is highly important. This paper argues that a comparative documentation of grass-roots initiatives to care for, share or recharge aquifers in places with acute resource pressures provides an important source of inspiration. Using a grounded anti-colonial and feminist approach, we combine an ethnographic documentation of groundwater practices with hydrogeological and engineering insights to enunciate, normatively assess and jointly learn from the knowledges, technologies and institutions that characterize such initiatives. Doing this usefully shifts the focus of planned efforts to regulate and govern groundwater away from government efforts to control individual pumping behaviours, to the identification of possibilities to anchor transformations to sustainability in collective action

    Uganda's experience in Ebola virus disease outbreak preparedness, 2018-2019.

    Get PDF
    BACKGROUND: Since the declaration of the 10th Ebola Virus Disease (EVD) outbreak in DRC on 1st Aug 2018, several neighboring countries have been developing and implementing preparedness efforts to prevent EVD cross-border transmission to enable timely detection, investigation, and response in the event of a confirmed EVD outbreak in the country. We describe Uganda's experience in EVD preparedness. RESULTS: On 4 August 2018, the Uganda Ministry of Health (MoH) activated the Public Health Emergency Operations Centre (PHEOC) and the National Task Force (NTF) for public health emergencies to plan, guide, and coordinate EVD preparedness in the country. The NTF selected an Incident Management Team (IMT), constituting a National Rapid Response Team (NRRT) that supported activation of the District Task Forces (DTFs) and District Rapid Response Teams (DRRTs) that jointly assessed levels of preparedness in 30 designated high-risk districts representing category 1 (20 districts) and category 2 (10 districts). The MoH, with technical guidance from the World Health Organisation (WHO), led EVD preparedness activities and worked together with other ministries and partner organisations to enhance community-based surveillance systems, develop and disseminate risk communication messages, engage communities, reinforce EVD screening and infection prevention measures at Points of Entry (PoEs) and in high-risk health facilities, construct and equip EVD isolation and treatment units, and establish coordination and procurement mechanisms. CONCLUSION: As of 31 May 2019, there was no confirmed case of EVD as Uganda has continued to make significant and verifiable progress in EVD preparedness. There is a need to sustain these efforts, not only in EVD preparedness but also across the entire spectrum of a multi-hazard framework. These efforts strengthen country capacity and compel the country to avail resources for preparedness and management of incidents at the source while effectively cutting costs of using a "fire-fighting" approach during public health emergencies

    Marburg virus disease outbreak in Kween District Uganda, 2017: Epidemiological and laboratory findings.

    Get PDF
    INTRODUCTION: In October 2017, a blood sample from a resident of Kween District, Eastern Uganda, tested positive for Marburg virus. Within 24 hour of confirmation, a rapid outbreak response was initiated. Here, we present results of epidemiological and laboratory investigations. METHODS: A district task force was activated consisting of specialised teams to conduct case finding, case management and isolation, contact listing and follow up, sample collection and testing, and community engagement. An ecological investigation was also carried out to identify the potential source of infection. Virus isolation and Next Generation sequencing were performed to identify the strain of Marburg virus. RESULTS: Seventy individuals (34 MVD suspected cases and 36 close contacts of confirmed cases) were epidemiologically investigated, with blood samples tested for MVD. Only four cases met the MVD case definition; one was categorized as a probable case while the other three were confirmed cases. A total of 299 contacts were identified; during follow- up, two were confirmed as MVD. Of the four confirmed and probable MVD cases, three died, yielding a case fatality rate of 75%. All four cases belonged to a single family and 50% (2/4) of the MVD cases were female. All confirmed cases had clinical symptoms of fever, vomiting, abdominal pain and bleeding from body orifices. Viral sequences indicated that the Marburg virus strain responsible for this outbreak was closely related to virus strains previously shown to be circulating in Uganda. CONCLUSION: This outbreak of MVD occurred as a family cluster with no additional transmission outside of the four related cases. Rapid case detection, prompt laboratory testing at the Uganda National VHF Reference Laboratory and presence of pre-trained, well-prepared national and district rapid response teams facilitated the containment and control of this outbreak within one month, preventing nationwide and global transmission of the disease

    Exploring the future impacts of urbanization and climate change on groundwater in Arusha, Tanzania

    No full text
    We combine satellite imagery, urban growth modelling, groundwater modelling and hydrogeological field expeditions to estimate the potential impacts in 2050 of rapid urbanization and climate change on groundwater in Arusha, Tanzania, and by extension similar areas in Sub-Saharan Africa. Our analysis suggests that a reduction of groundwater recharge by 30–44% will cause groundwater levels to drop by up to 75 m, mainly due to increased evapotranspiration and to an expansion in paved surface. If this scenario becomes reality, we predict that wells will run dry, creating health, social and environmental risks

    Qualitative soil moisture assessment in semi-arid Africa – the role of experience and training on inter-rater reliability

    Get PDF
    Soil and water management is particularly relevant in semi-arid regions to enhance agricultural productivity. During periods of water scarcity, soil moisture differences are important indicators of the soil water deficit and are traditionally used for allocating water resources among farmers of a village community. Here we present a simple, inexpensive soil wetness classification scheme based on qualitative indicators which one can see or touch on the soil surface. It incorporates the local farmers' knowledge on the best soil moisture conditions for seeding and brick making in the semi-arid environment of the study site near Arusha, Tanzania. The scheme was tested twice in 2014 with farmers, students and experts (April: 40 persons, June: 25 persons) for inter-rater reliability, bias of individuals and functional relation between qualitative and quantitative soil moisture values. During the test in April farmers assigned the same wetness class in 46 % of all cases, while students and experts agreed on about 60 % of all cases. Students who had been trained in how to apply the method gained higher inter-rater reliability than their colleagues with only a basic introduction. When repeating the test in June, participants were given improved instructions, organized in small subgroups, which resulted in a higher inter-rater reliability among farmers. In 66 % of all classifications, farmers assigned the same wetness class and the spread of class assignments was smaller. This study demonstrates that a wetness classification scheme based on qualitative indicators is a robust tool and can be applied successfully regardless of experience in crop growing and education level when an in-depth introduction and training is provided. The use of a simple and clear layout of the assessment form is important for reliable wetness class assignments

    Representation of seasonal land use dynamics in SWAT+ for improved assessment of blue and green water consumption

    No full text
    In most (sub)-tropical African cultivated regions, more than one cropping season exists following the (one or two) rainy seasons. An additional cropping season is possible when irrigation is applied during the dry season, which could result in three cropping seasons. However, most studies using agro-hydrological models such as the Soil and Water Assessment Tool (SWAT) to map blue and green evapotranspiration (ET) do not account for these cropping seasons. Blue ET is a portion of crop evapotranspiration after irrigation application, while green ET is the evapotranspiration resulting from rainfall. In this paper, we derived dynamic and static trajectories from seasonal land use maps to represent the land use dynamics following the major growing seasons to improve simulated blue and green water consumption from simulated evapotranspiration in SWAT+. A comparison between the default SWAT+ set-up (with static land use representation) and a dynamic SWAT+ model set-up (with seasonal land use representation) is made by a spatial mapping of the ET results. Additionally, the SWAT+ blue and green ET were compared with the results from the four remote sensing data-based methods, namely SN (Senay), EK (van Eekelen), the Budyko method, and soil water balance method (SWB). The results show that ET with seasonal representation is closer to remote sensing estimates, giving higher performance than ET with static land use representation. The root mean squared error decreased from 181 to 69 mm yr−1, the percent bias decreased from 20 % to 13 %, and the Nash–Sutcliffe efficiency increased from −0.46 to 0.4. Furthermore, the blue and green ET results from the dynamic SWAT+ model were compared to the four remote sensing methods. The results show that the SWAT+ blue and green ET are similar to the van Eekelen method and performed better than the other three remote sensing methods. It is concluded that representation of seasonal land use dynamics produces better ET results, which provide better estimations of blue and green agricultural water consumption

    How can we represent seasonal land use dynamics in SWAT and SWAT+ models for African cultivated catchments

    No full text
    In SWAT and SWAT+ models, the variations in hydrological processes are represented by Hydrological Response Units (HRUs). In the default models, agricultural land cover is represented by a single growing cycle. However, agricultural land use, especially in African cultivated catchments, typically consists of several cropping seasons, following dry and wet seasonal patterns, and are hence incorrectly represented in SWAT and SWAT+ default models. In this paper, we propose a procedure to incorporate agricultural seasonal land-use dynamics by (1) mapping land-use trajectories instead of static land-cover maps and (2) linking these trajectories to agricultural management settings. This approach was tested in SWAT and SWAT+ models of Usa catchment in Tanzania that is intensively cultivated by implementing dominant dynamic trajectories. Our results were evaluated with remote-sensing observations for Leaf Area Index (LAI), which showed that a single growing cycle did not well represent vegetation dynamics. A better agreement was obtained after implementing seasonal land-use dynamics for cultivated HRUs. It was concluded that the representation of seasonal land-use dynamics through trajectory implementation can lead to improved temporal patterns of LAI in default models. The SWAT+ model had higher flexibility in representing agricultural practices, using decision tables, and by being able to represent mixed cropping cultivations

    Comparison of blue and green water fluxes for different land use classes in a semi-arid cultivated catchment using remote sensing

    No full text
    Study area Kikuletwa catchment, Upper Pangani River Basin, Tanzania. Study focus This study compared yearly blue and green water fluxes using four different methods: Senay’s method (SN) (Senay et al., 2016), van Eekelen method (EK) (van Eekelen et al., 2015), the Budyko method (Simons et al., 2020) and the Soil Water Balance (SWB) model (FAO and IHE Delft, 2019). The yearly blue and green water fluxes of different Land Use Land Cover (LULC) classes were estimated using an ensemble of seven global remote sensing-based evapotranspiration products (Ensemble ET) and the CHIRPS rainfall dataset. The Ensemble ET was created from seven global RS-based surface energy balance models (GLEAM, CMRS-ET, SSEBop, ALEXI, SEBS, ETMonitor and MOD16). New hydrological insights Our study found that the EK method was able to map blue and green water fluxes with realistic results for irrigated and non-irrigation cultivated areas. Budyko and SWB gave too high blue water fluxes for the non-irrigated agricultural areas, whereas the Budyko and SWB models were not able to show a clear difference in blue-water fluxes in irrigated versus non-irrigated areas. On the other hand, the SN method estimated no blue water fluxes in more than half of the identified irrigated areas. Three of the four methods estimate the highest blue water fluxes (318–582 mm/y) in forested areas, while the SWB model estimates the highest blue water fluxes in irrigated banana and coffee (278 mm/y). Overall, we conclude that the EK method yielded the most realistic spatial pattern of blue-water fluxes when compared to the irrigated land use map, whereas SWB could be considered after further calibration if higher temporal data resolution (e.g. monthly) is required

    Accounting for seasonal land use dynamics to improve estimation of agricultural irrigation water withdrawals

    No full text
    The assessment of water withdrawals for irrigation is essential for managing water resources in cultivated tropical catchments. These water withdrawals vary seasonally, driven by wet and dry seasons. A land use map is one of the required inputs of hydrological models used to estimate water withdrawals in a catchment. However, land use maps provide typically static information and do not represent the hydrological seasons and related cropping seasons and practices throughout the year. Therefore, this study assesses the value of seasonal land use maps in the quantification of water withdrawals for a tropical cultivated catchment. We developed land use maps for the main seasons (long rains, dry, and short rains) for the semi-arid Kikuletwa catchment, Tanzania. Three Landsat 8 images from 2016 were used to develop seasonal land use land cover (LULC) maps: March (long rains), August (dry season), and October (short rains). Quantitative and qualitative observation data on cropping systems (reference points and questionnaires/surveys) were collected and used for the supervised classification algorithm. Land use classifications were done using 20 land use and land cover classes for the wet season image and 19 classes for the dry and short rain season images. Water withdrawals for irrigated agriculture were calculated using (1) the static land use map or (2) the three seasonal land use maps. Clear differences in land use can be seen between the dry and the other seasons and between rain-fed and irrigated areas. A difference in water withdrawals was observed when seasonal and static land use maps were used. The highest differences were obtained for irrigated mixed crops, with an estimation of 572 million m3/year when seasonal dynamic maps were used and only 90 million m3/year when a static map was used. This study concludes that detailed seasonal land use maps are essential for quantifying annual irrigation water use of catchment areas with distinct dry and wet seasonal dynamics
    corecore