30 research outputs found

    Agricultural factors affecting Fusarium communities in wheat kernels

    Get PDF
    Fusarium head blight (FHB) is a devastating disease of cereals caused by Fusarium fungi. The disease is of great economic importance especially owing to reduced grain quality due to contamination by a range of mycotoxins produced by Fusarium. Disease control and prediction is difficult because of the many Fusarium species associated with FHB. Different species may respond differently to control methods and can have both competitive and synergistic interactions. Therefore, it is important to understand how agricultural practices affect Fusarium at the community level.Lower levels of Fusariwn mycotoxin contamination of organically produced cereals compared with conventionally produced have been reported, but the causes of these differences are not well understood. The aim of our study was to investigate the effect of agricultural factors on Fusarium abundance and community composition in different cropping systems. Winter wheat kernels were collected from 18 organically and conventionally cultivated fields in Sweden, paired based on their geographical distance and the wheat cultivar grown. We characterised the Fusarium community in harvested wheat kernels using 454 sequencing of translation elongation factor 1-alpha amplicons. In addition, we quantified Fusariwn spp. using real-time PCR to reveal differences in biomass between fields.We identified 12 Fusariwn operational taxonomic units (OTUs) with a median of 4.5 OTUs per field. Fusarium graminearum was the most abundant species, while F. avenaceum had the highest occurrence. The abundance of Fusariwn spp. ranged two orders of magnitude between fields. Two pairs of Fusariurt species co-occurred between fields: F. poae with F. tricinctwn and F. culmorwn with F. sporofrichoides. We could not detect any difference in Fusariwn communities between the organic and conventional systems. However, agricultural intensity, measured as the number of pesticide applications and the amount of nitrogen fertiliser applied, had an impact on Fusariwn communities, specifically increasing the abundance of F. tricinctwn. There were geographical differences in the Fusarium community composition where F. graminearwn was more abundant in the western part of Sweden. The application of amplicon sequencing provided a comprehensive view of the Fusarium community in cereals. This gives us better opportunities to understand the ecology of Fusarium spp., which is important in order to limit FHB and mycotoxin contamination in cereals

    Evolutionary Processes and Spatial Genetic Variation in Euphrasia stricta on the Baltic Island of Gotland

    No full text
    The identification of processes governing genetic structure at different spatial scales remains a major challenge in evolutionary biology and is of considerable applied interest in conservation biology. In Euphrasia stricta five varieties have been identified (brevipila, gotlandica, stricta, suecica and tenuis) based on differences in habitat, phenology and morphology. In this thesis, I examined genetic variation at AFLP and microsatellite marker loci in relation to variation in habitat and morphology within and among varieties of E. stricta on the island Gotland in the Baltic Sea. The results are discussed in relation to evolutionary processes acting within this species complex. In a study conducted at the regional scale, the two early-flowering varieties suecica and tenuis each formed a genetically distinct group, while the three late-flowering varieties brevipila, gotlandica and stricta formed a third group. The results suggest that suecica and tenuis have ancient origins since they are genetically different both from the brevipila/gotlandica/stricta group and from each other despite their similar habitat preferences. This pattern was obtained using both marker systems. Discrepancies between AFLP and microsatellites were found in patterns of isolation by distance and in estimates of expected heterozygosity, He. Focusing on the mixed genetic group brevipila/gotlandica/stricta and the causes behind their clustering together despite differences in morphology and habitat preferences, I performed a study at a smaller geographic scale. Studying a population of E. stricta I found that, although gene flow within the population was strong, it had not prevented the formation of genetic groups associated with micro-habitat properties. An important result for conservation of the rare variety suecica is its distinct genetic separation from variety tenuis. If the aim of conservation is to preserve the uniqueness of suecica, the two varieties should be treated as separated entities

    Fungal OTU sequences

    No full text
    DNA sequence of the most abundant sequence in each OTU in fasta format (284 OTUs)

    Table S1-S6 (csv)

    No full text
    Supplementary data files in csv format

    R code

    No full text
    The R code for reproducing the statistical analyses and figures in the paper. The data are available in the 'SuppInfo_TablesS1-S6.xlsx' file and the R script reads from this file. Alternatively, the data are also available in .csv format

    Data from: Organic farming increases richness of fungal taxa in the wheat phyllosphere

    No full text
    Organic farming is often advocated as an approach to mitigate biodiversity loss on agricultural land. The phyllosphere provides a habitat for diverse fungal communities that are important for plant health and productivity. However, it is still unknown how organic farming affects the diversity of phyllosphere fungi in major crops. We sampled wheat leaves from 22 organically and conventionally cultivated fields in Sweden, paired based on their geographical location and wheat cultivar. Fungal communities were described using amplicon sequencing and real-time PCR. Species richness was higher on wheat leaves from organically managed fields, with a mean of 54 OTUs compared with 40 OTUs for conventionally managed fields. The main components of the fungal community were similar throughout the 350 km long sampling area and seven operational taxonomic units (OTUs) were present in all fields: Zymoseptoria, Dioszegia fristingensis, Cladosporium, Dioszegia hungarica, Cryptococcus, Ascochyta and Dioszegia. Fungal abundance was highly variable between fields, 103-105 internal transcribed spacer (ITS) copies per ng wheat DNA, but did not differ between cropping systems. Further analyses showed that weed biomass was the strongest explanatory variable for fungal community composition and OTU richness. These findings help provide a more comprehensive understanding of the effect of organic farming on the diversity of organism groups in different habitats within the agroecosystem

    Organic farming increases richness of fungal taxa in the wheat phyllosphere

    Get PDF
    International audienceOrganic farming is often advocated as an approach to mitigate biodiversity loss on agricultural land. The phyllosphere provides a habitat for diverse fungal communities that are important for plant health and productivity. However, it is still unknown how organic farming affects the diversity of phyllosphere fungi in major crops. We sampled wheat leaves from 22 organically and conventionally cultivated fields in Sweden, paired based on their geographical location and wheat cultivar. Fungal communities were described using amplicon sequencing and real-time PCR. Species richness was higher on wheat leaves from organically managed fields, with a mean of 54 operational taxonomic units (OTUs) compared with 40 OTUs for conventionally managed fields. The main components of the fungal community were similar throughout the 350-km-long sampling area, and seven OTUs were present in all fields : Zymoseptoria, Dioszegia fristingensis, Cladosporium, Dioszegia hungarica, Cryptococcus, Ascochyta and Dioszegia. Fungal abundance was highly variable between fields, 10(3)-10(5) internal transcribed spacer copies per ng wheat DNA, but did not differ between cropping systems. Further analyses showed that weed biomass was the strongest explanatory variable for fungal community composition and OTU richness. These findings help provide a more comprehensive understanding of the effect of organic farming on the diversity of organism groups in different habitats within the agroecosystem

    Figure S1-S3

    No full text
    Figure S1 Richness of fungal OTUs at different clustering dissimilarity cut-offs. Figure S2 Fungal OTUs significantly affected by cropping system. Figure S3 Comparison of potential pathogens between cropping systems

    Phenological Variation in Ambrosia artemisiifolia L. Facilitates Near Future Establishment at Northern Latitudes.

    Get PDF
    The invasive weed Ambrosia artemisiifolia (common ragweed) constitutes a great threat to public health and agriculture in large areas of the globe. Climate change, characterized by higher temperatures and prolonged vegetation periods, could increase the risk of establishment in northern Europe in the future. However, as the species is a short-day plant that requires long nights to induce bloom formation, it might still fail to produce mature seeds before the onset of winter in areas at northern latitudes characterized by short summer nights. To survey the genetic variation in flowering time and study the effect of latitudinal origin on this trait, a reciprocal common garden experiment, including eleven populations of A. artemisiifolia from Europe and North America, was conducted. The experiment was conducted both outside the range limit of the species, in Sweden and within its invaded range, in Croatia. Our main hypothesis was that the photoperiodic-thermal requirements of A. artemisiifolia constitute a barrier for reproduction at northern latitudes and, thus, halts the northern range shift despite expected climate change. Results revealed the presence of a north-south gradient in flowering time at both garden sites, indicating that certain European populations are pre-adapted to photoperiodic and thermal conditions at latitudes up to, at least, 60° N. This was confirmed by phenological recordings performed in a region close to the northern range limit, the north of Germany. Thus, we conclude that there exists a high risk for establishment and spread of A. artemisiifolia in FennoScandinavia in the near future. The range shift might occur independently of climate change, but would be accelerated by it
    corecore