220 research outputs found

    Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information

    Get PDF
    Accurate monitoring of croplands helps in making decisions (for insurance claims, crop management and contingency plans) at the macro-level, especially in drylands where variability in cropping is very high owing to erratic weather conditions. Dryland cereals and grain legumes are key to ensuring the food and nutritional security of a large number of vulnerable populations living in the drylands. Reliable information on area cultivated to such crops forms part of the national accounting of food production and supply in many Asian countries, many of which are employing remote sensing tools to improve the accuracy of assessments of cultivated areas. This paper assesses the capabilities and limitations of mapping cultivated areas in the Rabi (winter) season and corresponding cropping patterns in three districts characterized by small-plot agriculture. The study used Sentinel-2 Normalized Difference Vegetation Index (NDVI) 15-day time-series at 10m resolution by employing a Spectral Matching Technique (SMT) approach. The use of SMT is based on the well-studied relationship between temporal NDVI signatures and crop phenology. The rabi season in India, dominated by non-rainy days, is best suited for the application of this method, as persistent cloud cover will hamper the availability of images necessary to generate clearly differentiating temporal signatures. Our study showed that the temporal signatures of wheat, chickpea and mustard are easily distinguishable, enabling an overall accuracy of 84%, with wheat and mustard achieving 86% and 94% accuracies, respectively. The most significant misclassifications were in irrigated areas for mustard and wheat, in small-plot mustard fields covered by trees and in fragmented chickpea areas. A comparison of district-wise national crop statistics and those obtained from this study revealed a correlation of 96%

    Smartphone-based cardiac implantable electronic device remote monitoring: improved compliance and connectivity

    Get PDF
    Aims: Remote monitoring (RM) is the standard of care for follow up of patients with cardiac implantable electronic devices. The aim of this study was to compare smartphone-based RM (SM-RM) using patient applications (myMerlinPulse™ app) with traditional bedside monitor RM (BM-RM). Methods and results: The retrospective study included de-identified US patients who received either SM-RM or BM-RM capable of implantable cardioverter defibrillators or cardiac resynchronization therapy defibrillators (Abbott, USA). Patients in SM-RM and BM-RM groups were propensity-score matched on age and gender, device type, implant year, and month. Compliance with RM was quantified as the proportion of patients enrolling in the RM system (Merlin.net™) and transmitting data at least once. Connectivity was measured by the median number of days between consecutive transmissions per patient. Of the initial 9714 patients with SM-RM and 26 679 patients with BM-RM, 9397 patients from each group were matched. Remote monitoring compliance was higher in SM-RM; significantly more patients with SM-RM were enrolled in RM compared with BM-RM (94.4 vs. 85.0%, P < 0.001), similar number of patients in the SM-RM group paired their device (95.1 vs. 95.0%, P = 0.77), but more SM-RM patients transmitted at least once (98.1 vs. 94.3%, P < 0.001). Connectivity was significantly higher in the SM-RM, with patients transmitting data every 1.2 (1.1, 1.7) vs. every 1.7 (1.5, 2.0) days with BM-RM (P < 0.001) and remained better over time. Significantly more SM-RM patients utilized patient-initiated transmissions compared with BM-RM (55.6 vs. 28.1%, P < 0.001). Conclusion: In this large real-world study, patients with SM-RM demonstrated improved compliance and connectivity compared with BM-RM

    Human α2β1HI CD133+VE epithelial prostate stem cells express low levels of active androgen receptor

    Get PDF
    Stem cells are thought to be the cell of origin in malignant transformation in many tissues, but their role in human prostate carcinogenesis continues to be debated. One of the conflicts with this model is that cancer stem cells have been described to lack androgen receptor (AR) expression, which is of established importance in prostate cancer initiation and progression. We re-examined the expression patterns of AR within adult prostate epithelial differentiation using an optimised sensitive and specific approach examining transcript, protein and AR regulated gene expression. Highly enriched populations were isolated consisting of stem (α(2)β(1)(HI) CD133(+VE)), transiently amplifying (α(2)β(1)(HI) CD133(-VE)) and terminally differentiated (α(2)β(1)(LOW) CD133(-VE)) cells. AR transcript and protein expression was confirmed in α(2)β(1)(HI) CD133(+VE) and CD133(-VE) progenitor cells. Flow cytometry confirmed that median (±SD) fraction of cells expressing AR were 77% (±6%) in α(2)β(1)(HI) CD133(+VE) stem cells and 68% (±12%) in α(2)β(1)(HI) CD133(-VE) transiently amplifying cells. However, 3-fold lower levels of total AR protein expression (peak and median immunofluorescence) were present in α(2)β(1)(HI) CD133(+VE) stem cells compared with differentiated cells. This finding was confirmed with dual immunostaining of prostate sections for AR and CD133, which again demonstrated low levels of AR within basal CD133(+VE) cells. Activity of the AR was confirmed in prostate progenitor cells by the expression of low levels of the AR regulated genes PSA, KLK2 and TMPRSS2. The confirmation of AR expression in prostate progenitor cells allows integration of the cancer stem cell theory with the established models of prostate cancer initiation based on a functional AR. Further study of specific AR functions in prostate stem and differentiated cells may highlight novel mechanisms of prostate homeostasis and insights into tumourigenesis

    Institutional and behaviour-change interventions to support COVID-19 public health measures: a review by the Lancet Commission Task Force on public health measures to suppress the pandemic

    Get PDF
    The Lancet COVID-19 Commission Task Force for Public Health Measures to Suppress the Pandemic was launched to identify critical points for consideration by governments on public health interventions to control coronavirus disease 2019 (COVID-19). Drawing on our review of published studies of data analytics and modelling, evidence synthesis and contextualisation, and behavioural science evidence and theory on public health interventions from a range of sources, we outline evidence for a range of institutional measures and behaviour-change measures. We cite examples of measures adopted by a range of countries, but especially jurisdictions that have, thus far, achieved low numbers of COVID-19 deaths and limited community transmission of severe acute respiratory syndrome coronavirus 2. Finally, we highlight gaps in knowledge where research should be undertaken. As countries consider long-term measures, there is an opportunity to learn, improve the response and prepare for future pandemics.publishedVersio

    The potential of urinary metabolites for diagnosing multiple sclerosis

    Get PDF
    A definitive diagnostic test for multiple sclerosis (MS) does not exist; instead physicians use a combination of medical history, magnetic resonance imaging, and cerebrospinal fluid analysis (CSF). Significant effort has been employed to identify biomarkers from CSF to facilitate MS diagnosis; however none of the proposed biomarkers have been successful to date. Urine is a proven source of metabolite biomarkers and has the potential to be a rapid, non-invasive, inexpensive, and efficient diagnostic tool for various human diseases. Nevertheless, urinary metabolites have not been extensively explored as a source of biomarkers for MS. Instead, we demonstrate that urinary metabolites have significant promise for monitoring disease-progression, and response to treatment in MS patients. NMR analysis of urine permitted the identification of metabolites that differentiate experimental autoimmune encephalomyelitis (EAE)-mice (prototypic disease model for MS) from healthy and MS drug-treated EAE mice

    Clinical trials for stem cell therapies

    Get PDF
    In recent years, clinical trials with stem cells have taken the emerging field in many new directions. While numerous teams continue to refine and expand the role of bone marrow and cord blood stem cells for their vanguard uses in blood and immune disorders, many others are looking to expand the uses of the various types of stem cells found in bone marrow and cord blood, in particular mesenchymal stem cells, to uses beyond those that could be corrected by replacing cells in their own lineage. Early results from these trials have produced mixed results often showing minor or transitory improvements that may be attributed to extracellular factors. More research teams are accelerating the use of other types of adult stem cells, in particular neural stem cells for diseases where beneficial outcome could result from either in-lineage cell replacement or extracellular factors. At the same time, the first three trials using cells derived from pluripotent cells have begun

    Intracellular Targeting Specificity of Novel Phthalocyanines Assessed in a Host-Parasite Model for Developing Potential Photodynamic Medicine

    Get PDF
    Photodynamic therapy, unlikely to elicit drug-resistance, deserves attention as a strategy to counter this outstanding problem common to the chemotherapy of all diseases. Previously, we have broadened the applicability of this modality to photodynamic vaccination by exploiting the unusual properties of the trypanosomatid protozoa, Leishmania, i.e., their innate ability of homing to the phagolysosomes of the antigen-presenting cells and their selective photolysis therein, using transgenic mutants endogenously inducible for porphyrin accumulation. Here, we extended the utility of this host-parasite model for in vitro photodynamic therapy and vaccination by exploring exogenously supplied photosensitizers. Seventeen novel phthalocyanines (Pcs) were screened in vitro for their photolytic activity against cultured Leishmania. Pcs rendered cationic and soluble (csPcs) for cellular uptake were phototoxic to both parasite and host cells, i.e., macrophages and dendritic cells. The csPcs that targeted to mitochondria were more photolytic than those restricted to the endocytic compartments. Treatment of infected cells with endocytic csPcs resulted in their accumulation in Leishmania-containing phagolysosomes, indicative of reaching their target for photodynamic therapy, although their parasite versus host specificity is limited to a narrow range of csPc concentrations. In contrast, Leishmania pre-loaded with csPc were selectively photolyzed intracellularly, leaving host cells viable. Pre-illumination of such csPc-loaded Leishmania did not hinder their infectivity, but ensured their intracellular lysis. Ovalbumin (OVA) so delivered by photo-inactivated OVA transfectants to mouse macrophages and dendritic cells were co-presented with MHC Class I molecules by these antigen presenting cells to activate OVA epitope-specific CD8+T cells. The in vitro evidence presented here demonstrates for the first time not only the potential of endocytic csPcs for effective photodynamic therapy against Leishmania but also their utility in photo-inactivation of Leishmania to produce a safe carrier to express and deliver a defined antigen with enhanced cell-mediated immunity

    Novel Genotypes of H9N2 Influenza A Viruses Isolated from Poultry in Pakistan Containing NS Genes Similar to Highly Pathogenic H7N3 and H5N1 Viruses

    Get PDF
    The impact of avian influenza caused by H9N2 viruses in Pakistan is now significantly more severe than in previous years. Since all gene segments contribute towards the virulence of avian influenza virus, it was imperative to investigate the molecular features and genetic relationships of H9N2 viruses prevalent in this region. Analysis of the gene sequences of all eight RNA segments from 12 viruses isolated between 2005 and 2008 was undertaken. The hemagglutinin (HA) sequences of all isolates were closely related to H9N2 viruses isolated from Iran between 2004 and 2007 and contained leucine instead of glutamine at position 226 in the receptor binding pocket, a recognised marker for the recognition of sialic acids linked α2–6 to galactose. The neuraminidase (NA) of two isolates contained a unique five residue deletion in the stalk (from residues 80 to 84), a possible indication of greater adaptation of these viruses to the chicken host. The HA, NA, nucleoprotein (NP), and matrix (M) genes showed close identity with H9N2 viruses isolated during 1999 in Pakistan and clustered in the A/Quail/Hong Kong/G1/97 virus lineage. In contrast, the polymerase genes clustered with H9N2 viruses from India, Iran and Dubai. The NS gene segment showed greater genetic diversity and shared a high level of similarity with NS genes from either H5 or H7 subtypes rather than with established H9N2 Eurasian lineages. These results indicate that during recent years the H9N2 viruses have undergone extensive genetic reassortment which has led to the generation of H9N2 viruses of novel genotypes in the Indian sub-continent. The novel genotypes of H9N2 viruses may play a role in the increased problems observed by H9N2 to poultry and reinforce the continued need to monitor H9N2 infections for their zoonotic potential
    corecore