485 research outputs found

    Classical Strongly Coupled QGP II: Screening and Equation of State

    Get PDF
    We analyze the screening and bulk energy of a classical and strongly interacting plasma of color charges, a model we recently introduced for the description of a quark-gluon plasma at T=(1-3)Tc. The partition function is organized around the Debye-Huckel limit. The linear Debye-Huckel limit is corrected by a virial expansion. For the pressure, the expansion is badly convergent even in the dilute limit. The non-linear Debye-Huckel theory is studied numerically as an alternative for moderately strong plasmas. We use Debye theory of solid to extend the analysis to the crystal phase at very strong coupling. The analytical results for the bulk energy per particle compare well with the numerical results from molecular dynamics simulation for all couplings.Comment: 9 pages, 5 figure

    Reconstructing the Inflaton Potential

    Get PDF
    A review is presented of recent work by the authors concerning the use of large scale structure and microwave background anisotropy data to determine the potential of the inflaton field. The importance of a detection of the stochastic gravitational wave background is emphasised, and some preliminary new results of tests of the method on simulated data sets with uncertainties are described. (Proceedings of ``Unified Symmetry in the Small and in the Large'', Coral Gables, 1994)Comment: 13 pages, uuencoded postscript file with figures included (LaTeX file available from ARL), FERMILAB-Conf 94/189

    Nonthermal Supermassive Dark Matter

    Get PDF
    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may be elementary particles of mass much greater than the weak scale. Searches for dark matter should not be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.Comment: 11 page LaTeX file. No major changes. Version accepted by PR

    Femtolensing and Picolensing by Axion Miniclusters

    Get PDF
    Non-linear effects in the evolution of the axion field in the early Universe may lead to the formation of gravitationally bound clumps of axions, known as ``miniclusters.'' Minicluster masses and radii should be in the range Mmc1012MM_{\rm mc}\sim10^{-12} M_\odot and Rmc1010R_{\rm mc} \sim 10^{10}cm, and in plausible early-Universe scenarios a significant fraction of the mass density of the Universe may be in the form of axion miniclusters. If such axion miniclusters exist, they would have the physical properties required to be detected by ``femtolensing.''Comment: 7 pages plus 2 figures (Fig.1 avalible upon request), LaTe

    On cosmological observables in a swiss-cheese universe

    Get PDF
    Photon geodesics are calculated in a swiss-cheese model, where the cheese is made of the usual Friedmann-Robertson-Walker solution and the holes are constructed from a Lemaitre-Tolman-Bondi solution of Einstein's equations. The observables on which we focus are the changes in the redshift, in the angular-diameter--distance relation, in the luminosity-distance--redshift relation, and in the corresponding distance modulus. We find that redshift effects are suppressed when the hole is small because of a compensation effect acting on the scale of half a hole resulting from the special case of spherical symmetry. However, we find interesting effects in the calculation of the angular distance: strong evolution of the inhomogeneities (as in the approach to caustic formation) causes the photon path to deviate from that of the FRW case. Therefore, the inhomogeneities are able to partly mimic the effects of a dark-energy component. Our results also suggest that the nonlinear effects of caustic formation in cold dark matter models may lead to interesting effects on photon trajectories.Comment: 25 pages, 21 figures; replaced to fit the version accepted for publication in Phys. Rev.

    Harrison-Z'eldovich primordial spectrum is consistent with observations

    Get PDF
    Inflation predicts primordial scalar perturbations with a nearly scale-invariant spectrum and a spectral index approximately unity (the Harrison--Zel'dovich (HZ) spectrum). The first important step for inflationary cosmology is to check the consistency of the HZ primordial spectrum with current observations. Recent analyses have claimed that a HZ primordial spectrum is excluded at more than 99% c.l.. Here we show that the HZ spectrum is only marginally disfavored if one considers a more general reionization scenario. Data from the Planck mission will settle the issue.Comment: 4 Pages, 2 Figure

    Classical Strongly Coupled QGP I: The Model and Molecular Dynamics Simulations

    Full text link
    We propose a model for the description of strongly interacting quarks and gluon quasiparticles at T=(13)TcT=(1-3)T_c, as a classical and nonrelativistic colored Coulomb gas. The sign and strength of the inter-particle interactions are fixed by the scalar product of their classical {\it color vectors} subject to Wong's equations. The model displays a number of phases as the Coulomb coupling is increased ranging from a gas, to a liquid, to a crystal with antiferromagnetic-like color ordering. We analyze the model using Molecular Dynamics (MD) simulations and discuss the density-density correlator in real time. We extract pertinent decorrelation times, diffusion and viscosity constants for all phases. The classical results when extrapolated to the sQGP suggest that the phase is liquid-like, with a diffusion constant D0.1/TD\approx 0.1/T and a bulk viscosity to entropy density ratio η/s1/3\eta/s\approx 1/3.Comment: 11 pages, 14 figure

    Light-cone averages in a swiss-cheese universe

    Full text link
    We analyze a toy swiss-cheese cosmological model to study the averaging problem. In our model, the cheese is the EdS model and the holes are constructed from a LTB solution. We study the propagation of photons in the swiss-cheese model, and find a phenomenological homogeneous model to describe observables. Following a fitting procedure based on light-cone averages, we find that the the expansion scalar is unaffected by the inhomogeneities. This is because of spherical symmetry. However, the light-cone average of the density as a function of redshift is affected by inhomogeneities. The effect arises because, as the universe evolves, a photon spends more and more time in the (large) voids than in the (thin) high-density structures. The phenomenological homogeneous model describing the light-cone average of the density is similar to the concordance model. Although the sole source in the swiss-cheese model is matter, the phenomenological homogeneous model behaves as if it has a dark-energy component. Finally, we study how the equation of state of the phenomenological model depends on the size of the inhomogeneities, and find that the equation-of-state parameters w_0 and w_a follow a power-law dependence with a scaling exponent equal to unity. That is, the equation of state depends linearly on the distance the photon travels through voids. We conclude that within our toy model, the holes must have a present size of about 250 Mpc to be able to mimic the concordance model.Comment: 20 pages, 14 figures; replaced to fit the version accepted for publication in Phys. Rev.
    corecore