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Abstract

We review the relation between the inationary potential and the spectra of density

(scalar) perturbations and gravitational waves (tensor perturbations) produced, with

particular emphasis on the possibility of reconstructing the inaton potential from ob-

servations. The spectra provide a potentially powerful test of the inationary hypoth-

esis; they are not independent but instead are linked by consistency relations reecting

their origin from a single inationary potential. To lowest-order in a perturbation ex-

pansion there is a single, now familiar, relation between the tensor spectral index and

the relative amplitude of the spectra. We demonstrate that there is an in�nite hierarchy

of such consistency equations, though observational di�culties suggest only the �rst is

ever likely to be useful. We also note that since observations are expected to yield much

better information on the scalars than on the tensors, it is likely to be the next-order

version of this consistency equation which will be appropriate, not the lowest-order

one. If ination passes the consistency test, one can then con�dently use the remaining

observational information to constrain the inationary potential, and we survey the gen-

eral perturbative scheme for carrying out this procedure. Explicit expressions valid to

next-lowest order in the expansion are presented. We then briey assess the prospects

for future observations reaching the quality required, and consider simulated data sets

motivated by this outlook.
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I Introduction

Observational cosmology is entering a new era where it is becoming possible to make detailed
quantitative tests of models of the early universe for the �rst time. Such observations
are presently the most plausible route towards learning some of the details of physics at
extremely high energies, and the possibility of testing some of the speculative ideas of recent
years has generated much excitement.

One of the most important paradigms in early universe cosmology is that of cosmolog-
ical ination, which postulates a period of accelerated expansion in the universe's distant
past (Starobinsky, 1980; Guth, 1981; Sato, 1981; Albrecht and Steinhardt, 1982; Hawk-
ing and Moss, 1982; Linde, 1982a, 1983). Although originally introduced as a possible
solution to a host of cosmological conundrums such as the horizon, atness and monopole
problems, by far the most useful property of ination is that it generates spectra of both
density perturbations (Guth and Pi, 1982; Hawking, 1982; Linde, 1982b; Starobinsky, 1982;
Bardeen, Steinhardt, and Turner, 1983) and gravitational waves (Starobinsky, 1979; Ab-
bott and Wise, 1984a). These extend from extremely short scales to scales considerably
in excess of the size of the observable universe. During ination the scale factor grows
quasi-exponentially, while the Hubble radius remains almost constant. Consequently the
wavelength of a quantum uctuation { either in the scalar �eld whose potential energy
drives ination or in the graviton �eld { soon exceeds the Hubble radius. The amplitude
of the uctuation therefore becomes `frozen'. Once ination has ended, however, the Hub-
ble radius increases faster than the scale factor, so the uctuations eventually reenter the
Hubble radius during the radiation- or matter-dominated eras. The uctuations that exit
around 60 e-foldings or so before reheating reenter with physical wavelengths in the range
accessible to cosmological observations. These spectra provide a distinctive signature of
ination. They can be measured in a variety of di�erent ways including the analysis of mi-
crowave background anisotropies, velocity ows in the universe, clustering of galaxies and
the abundances of gravitationally bound objects of various types (for reviews, see Efstathiou
(1990); Liddle and Lyth (1993a)).

Until the measurement of large angle microwave background anisotropies by the COsmic
Background Explorer (COBE) satellite (Smoot et al., 1992; Wright et al., 1992; Bennett et
al., 1994, 1996; see White, Scott, and Silk (1994) for a general discussion of the microwave
background), such observations covered a fairly limited range of scales, and it was satisfac-
tory to treat the prediction of a generic inationary scenario as giving rise to a scale-invariant
(Harrison{Zel'dovich) spectrum of density perturbations (Harrison, 1970; Zel'dovich, 1972)
and a negligible amplitude of gravitational waves (though even then, it was recognized that
the scale-invariance was only approximate (Bardeen et al., 1983)). Since the detection by
COBE, however, the spectra are now constrained over a range of scales covering some four
orders of magnitude from one megaparsec up to perhaps ten thousand megaparsecs. More-
over, shortly after the COBE detection, a number of authors reexamined the possibility
that a signi�cant fraction of the signal could be due to gravitational waves (Krauss and
White, 1992; Davis et al., 1992; Salopek, 1992; Liddle and Lyth, 1992; Lidsey and Coles,
1992; Lucchin, Matarrese, and Mollerach, 1992; Souradeep and Sahni, 1992; Adams et al.,
1993; Dolgov and Silk, 1993).

Thus, the inationary prediction must now be considered with much greater care, even
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in order to deal with present observations. At the next level of accuracy, one �nds that
di�erent ination models make di�erent predictions for the spectra, which can be viewed
as di�ering magnitudes of variation from the scale-invariant result. In the simplest approx-
imation the spectra are taken to be power-laws. Hence, modern observations discriminate
between di�erent inationary models, and are already su�cient to rule out some models
completely (see e. g. Liddle and Lyth, 1992) and substantially constrain the parameter space
of others (Liddle and Lyth, 1993a). Future observations will make even stronger demands
on theoretical precision, and will certainly tightly constrain ination.

These deviations from highly symmetric situations such as a scale-invariant spectrum
provide an extremely distinctive way of probing ination. This is considerably more pow-
erful than employing historically emphasised predictions such as a spatially at universe.
Although a spatially at universe is indeed a typical (but not inevitable, see e.g., Sasaki
et al. (1993); Bucher, Goldhaber, and Turok (1995)) outcome of ination, it appears un-
likely that this feature will be unique to ination. Moreover, the power that observations
such as microwave background anisotropies provides may be su�cient to override the rather
subjective arguments often made against ination models because of their apparent `unnat-
uralness'. Regardless of whether a model appears natural or otherwise, it should be the
observations which decide whether it is correct or not.

In a wide range of inationary models, the underlying dynamics is simply that of a
single scalar �eld | the inaton | rolling in some underlying potential. This scenario is
generically referred to as chaotic ination (Linde, 1983, 1990b) in reference to its choice of
initial conditions. This picture is widely favored because of its simplicity and has received by
far the most attention to date. Furthermore, many super�cially more complicated models
can be rewritten in this framework. In view of this we shall concentrate on such a type of
model here.

The generation of spectra of density perturbations and gravitational waves has been
extensively investigated in these theories. The usual strategy is an expansion in the devi-
ation from scale-invariance, formally expressed as the slow-roll expansion (Steinhardt and
Turner, 1984; Salopek and Bond, 1990; Liddle, Parsons, and Barrow, 1994). At the simplest
level of approximation, the spectra can be expressed as power-laws in wavenumber; further
accuracy entails calculation of the deviations from this power-law approximation.

A crucial aspect of the two spectra is that they are not independent. In a general sense,
this is clear since they correspond at the formal level to two continuous functions that
both have an origin in the single continuous function expressing the scalar �eld potential.
Such a link was noted in the simplest situation, where the spectra are approximated by
power-laws, by Liddle and Lyth (1992); the general situation where the two are linked
by a consistency equation was expounded in Copeland et al. (1993b, henceforth CKLL1),
and an explicit higher-order version of the simplest equation was found by Copeland et al.
(1994a, henceforth CKLL2). If one had complete expressions for the entire problem, the
consistency relation would be represented as a di�erential equation relating the two spectra.
However, we shall argue that it is preferable to express the spectra via an order-by-order
expansion. In this case one obtains a �nite set of algebraic expressions which represent
the coe�cients of an expansion of the full di�erential equation. The familiar situation
is a single consistency equation that relates the gravitational wave spectral index to the
relative amplitudes of the spectra. This is a result of the lowest-order expansion. The
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general situation of multiple consistency equations does not seem to have been expounded
before, though a second consistency equation did appear in Kosowsky and Turner (1995).
In practice, the observational di�culties associated with measurements of the details of the
gravitational wave spectrum make it extremely unlikely that any but the �rst consistency
equation shall ever be needed.

Given a particular set of observations of some accuracy, one can attempt the bold task
of reconstructing the inaton potential from the observations. In fact, the situation one
hopes for is stronger than a simple reconstruction, the language of which suggests the pos-
sibility of �nding a suitable potential regardless of the observations. With su�ciently good
observations, one can �rst test whether the consistency equation is satis�ed; in situations
where observations make this test non-trivial it provides a very convincing vindication of the
inationary scenario. Thus emboldened, one could then go on to use the remaining, non-
degenerate, information to constrain features of the inaton potential. Figure 1 illustrates
this procedure schematically.

The main obstacle in reconstruction is the limited range of scales accessible. Although
the observations may span up to four orders of magnitude, the expansion of the universe
is usually so fast during ination that this typically translates into only a brief range of
scalar �eld values. One should therefore not overexaggerate the usefulness of this approach
in determining the detailed structure of physics at high energy, but one should bear in mind
that this may be the only observational information available of any kind at such energies.

A second obstacle is that one doesn't observe the primordial spectra directly, but rather
after they have evolved considerably. Although this is a linear problem (except on the
shortest scales) and hence computationally tractable, the evolution necessarily depends on
the various cosmological parameters, such as the expansion rate and the nature of any dark
matter. The form of the initial spectra must be untangled from their inuence. We shall
discuss this in some detail in Section VII.

Earlier papers discuss two possible ways of treating observational data. The bolder
strategy is to use estimates of the spectra as functions of scale (Hodges and Blumenthal,
1990; Grishchuk and Solokhin, 1991; CKLL1). In practice, however, this approach founders
through the lack of theoretically derived exact expressions for the spectra produced by an
arbitrary potential. We shall therefore argue in this review in favor of the alternative ap-
proach, which is usually called perturbative reconstruction (Turner, 1993a; Copeland et al.,
1993a; CKLL1; Turner, 1993b; CKLL2; Liddle and Turner, 1994). In this approach, the
consistency equation and scalar potential are determined as an expansion about a given
point (regarded either as a single scale in the spectra or as a single point on the potential),
allowing reconstruction of a region of the potential about that point. This has the consid-
erable advantage that one can terminate the series when either theoretical or observational
knowledge runs out.

The outline of this review is as follows. We devote two Sections to a review of the in-
ation driven by a (slowly) rolling scalar �eld. We begin by considering the classical scalar
�eld dynamics and then proceed to discuss the generation of the spectra of density pertur-
bations and gravitational waves. Because an accurate derivation of the predicted spectra is
crucial to this programme, we provide a detailed account of the most accurate calculation
presently available, due to Stewart and Lyth (1993). In Section IV we consider the sim-
plest possible scenario allowing reconstruction, and introduce the notion of the consistency
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equation. Section V reviews the present state-of-the-art, where next{order corrections are
incorporated into all expressions. One hopes that observational accuracy will justify this
more detailed analysis, though this depends upon which (if any) ination model proves
correct. Section VI then expands on this by describing the full perturbative reconstruction
framework, illustrating how much information can be obtained from which measurements
and demonstrating that one can write a hierarchy of consistency equations. We then briey
illustrate worked examples on simulated data in Section VII. Before concluding, we devote a
section to an examination of other proposals for constraining the inaton potential, without
using large-scale structure observations.

II Inationary Cosmology and Scalar Fields

A The fundamentals of inationary cosmology

Observations indicate that the density distribution in the universe is nearly smooth on
large scales, but contains signi�cant irregularities on small scales. These correspond to a
hierarchy of structures including galaxies, clusters and superclusters of galaxies. One of
the most important questions that modern cosmology must address is why the observable
universe is almost, but not quite exactly, homogeneous and isotropic on su�ciently large
scales.

The hot big bang model is able to explain the current expansion of the universe, the
primordial abundances of the light elements and the origin of the cosmic microwave back-
ground radiation; for a review of all these successes see Kolb and Turner (1990). However,
this model as it stands is unable to explain the origin of structure in the universe. This
problem is related to the well known atness problem (Peebles and Dicke, 1979) and is es-
sentially a problem of initial data. It arises because the entropy in the universe is so large,
S � 1088 (Barrow and Matzner, 1977). One expects this quantity to be of order unity since
it is a dimensionless constant.

This paradox can be made more quantitative in the following way. The dynamics of a
Friedmann{Robertson{Walker (FRW) universe containing matter with density � and pres-
sure p is determined by the Einstein acceleration equation

�a

a
= � 4�

3m2
Pl

(�+ 3p); (2.1)

the Friedmann equation

H2 =
8�

3m2
Pl

�� k

a2
; (2.2)

and the mass conservation equation

_�+ 3H(�+ p) = 0; (2.3)

where a(t) is the scale factor of the universe, H � _a=a is the Hubble expansion parameter,
a dot denotes di�erentiation with respect to cosmic time t, mPl is the Planck mass and
k = 0;�1;+1 for spatially at, open, or closed cosmologies, respectively. Units are chosen
such that c = �h = 1.
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The Friedmann equation (2.2) may be expressed in terms of the 
{parameter. This
parameter is de�ned as the ratio of the energy density of the universe to the critical energy
density �c that is just su�cient to halt the current expansion:


 � �

�c
; �c � 3m2

PlH
2

8�
: (2.4)

The current observational values for these parameters are �c = 1:88h2 � 10�29 g cm�3

and H0 = 100h km s�1 Mpc�1 where conservatively we have 0:4 � h � 0:8. Eq. (2.2)
simpli�es to


� 1 =
k

a2H2
; (2.5)

and this implies that

� 1



=

3m2
Pl

8�

k

�a2
: (2.6)

Now, for a radiation{dominated universe, the equation of state is given by � = 3p =
�2g�T

4=30 at some temperature T , where g� = O(102) represents the total number of
relativistic degrees of freedom in the matter sector at that time. Thus the scale factor
grows as a(t) / t1=2 when k = 0 and the expansion rate is given by

H = 1:66g1=2�

 
T 2

mPl

!
=

1

2t
: (2.7)

Eq. (2.7) yields the useful expression

�
t

sec

�
�
�

T

MeV

��2
(2.8)

and substituting Eqs. (2.7) and (2.8) into Eq. (2.6) implies that

����
� 1




���� � 1043

S2=3

�
t

sec

�
� 1037

S2=3

�
GeV

T

�2
; (2.9)

where S � 1088 is the entropy contained within the present horizon. The large amount of
entropy in the universe therefore implies that 
 must have been very close to unity at early
times. Indeed, we �nd that 
 = 1 � 10�16 just one second after the big bang, the time of
nucleosynthesis.

The atness problem is therefore a problem of understanding why the (classical) initial
conditions corresponded to a universe that was so close to spatial atness. In a sense,
the problem is one of �ne{tuning and although such a balance is possible in principle, one
nevertheless feels that it is unlikely. On the other hand, the atness problem arises because
the entropy in a comoving volume is conserved. It is possible, therefore, that the problem
could be resolved if the cosmic expansion was non{adiabatic for some �nite time interval
t 2 [ti; tf ] during the early history of the universe.

This point was made explicitly by Guth in his seminal paper of 1981. He postulated
that the entropy changed by an amount

Sf = Z3Si (2.10)
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during this time interval, where Z is a numerical factor. In Guth's original model, this
entropy production occurred at, or just below, the energy scale TGUT = O(1017) GeV
associated with the Grand Uni�ed (GUT) phase transition. This corresponds to a timescale
t � 10�40 s. Eq. (2.9) then implies that the atness problem is solved, in the sense that
j
�1i � 1j = O(1), if Z � 1028. It can be shown that the other problems of the big bang
model, such as the horizon and monopole problems are also solved if Z satis�es this lower
bound (Guth, 1981).

Guth called this process of entropy production ination, because the volume of the
universe also grows by the factor Z3 between t = ti and t = tf . Indeed, the expansion of
the universe during the inationary epoch is very rapid. Further insight into the nature of
this expansion may be gained by considering Eq. (2.6). This expression implies that the
quantity (
�1 � 1)�a2 is conserved for an arbitrary equation of state. It follows, therefore,
that

(
�1i � 1)a2i �i = (
�1f � 1)a2f �f (2.11)

and, if we assume that the standard, big bang model is valid for t > tf , we may deduce that
(Lucchin and Matarrese, 1985b)

�ia
2
i j
�1i � 1j � 10�56�fa

2
f j
�10 � 1j: (2.12)

Since our current observations imply that j
�10 � 1j = O(1), the atness problem is solved
if �fa

2
f � �ia

2
i . However, Eq. (2.2) implies that the quantity 3 _a2 � (8�=m2

Pl)�a
2 is also

conserved. Consequently, this inequality is satis�ed if _af > _ai. Thus, a necessary condition
for ination to proceed is that the scale factor of the universe accelerates with respect to
cosmic time:

�a(t) > 0 : (2.13)

This is in contrast to the decelerating expansion that arises in the big bang model.
The question now arises as to the nature of the energy source that drives this accelerated

expansion. It follows from Eq. (2.1) that Eq. (2.13) is satis�ed if � + 3p < 0 and this is
equivalent to violating the strong energy condition (Hawking and Ellis, 1973). The simplest
way to achieve such an antigravitational e�ect is by the presence of a homogeneous scalar
�eld, �, with some self{interaction potential V (�) � 0. In the FRW universe, such a �eld
is equivalent to a perfect uid with energy density and pressure given by

� =
1

2
_�2 + V (�) (2.14)

and

p =
1

2
_�2 � V (�) ; (2.15)

respectively. Other matter �elds play a negligible role in the evolution during the ination,
so their presence will be ignored. In this case, Eqs. (2.2) and (2.3) are given by

H2 =
8�

3m2
Pl

�
1

2
_�2 + V (�)

�
� k

a2
(2.16)

and
��+ 3H _� = �V 0(�); (2.17)
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where here and throughout a prime denotes di�erentiation with respect to �. Hence, �� �
p � � and we have the inationary requirement �a > 0 as long as _�2 < V . Ination is thus
achieved when the matter sector of the theory applicable at some stage in the early universe
is dominated by vacuum energy.

Recently, an alternative inationary scenario | the pre{big bang cosmology | has been
developed whereby the accelerated expansion is driven by the kinetic energy of a scalar �eld
rather than its potential energy (Gasperini and Veneziano, 1993a,b, 1994). If the �eld is
non{minimally coupled to gravity in an appropriate fashion, this kinetic energy can produce
a su�ciently negative pressure and a violation of the strong energy condition (Pollock and
Sahdev, 1989; Levin, 1995a). Such couplings arise naturally within the context of the
string e�ective action. However, models of this sort inherently su�er from a `graceful exit'
problem due to the existence of singularities in both the curvature and the scalar �eld motion
(Brustein and Veneziano, 1994; Kaloper, Madden and Olive, 1995, 1996; Levin, 1995b;
Easther, Maeda, and Wands, 1996). Moreover, a satisfactory mechanism for generating
structure formation and microwave background anisotropies in these models has yet to be
developed, although it is possible that such inhomogeneities may be generated by quantum
uctuations in the electromagnetic �eld (Gasperini, Giovannini and Veneziano, 1995).

In view of this, we shall restrict our discussion to potential-driven models. We will
focus in this work on some of the general features of the chaotic ination scenario (Linde,
1983, 1990b). Although Linde's original paper considered a speci�c potential (a quartic
one), the theme was much more general. We adopt the modern usage of chaotic ination

to refer to any model where ination is driven by a single scalar �eld slow-rolling from
a regime of extremely high potential energy. The phrase does not imply any particular
choice of potential. Most, though not quite all, modern inationary models fall under the
umbrella of this de�nition. Since the precise identity of the scalar �eld driving the ination
is unknown, it is usually referred to as the inaton �eld.

In the chaotic ination scenario, it is assumed that the universe emerged from a quantum
gravitational state with an energy density comparable to that of the Planck density. This
implies that V (�) � m4

Pl and results in a large friction term in the Friedmann equation
(2.16). Consequently, the inaton will slowly roll down its potential, i.e., j��j � Hj _�j and
_�2 � V . The condition for ination is therefore satis�ed and the scale factor grows as

a(t) = ai exp

�Z t

ti

dt0H(t0)

�
: (2.18)

The expansion is quasi{exponential in nature, since H(�) � 8�V (�)=3m2
Pl is almost con-

stant, and the curvature term k=a2 in Eq. (2.16) is therefore rapidly redshifted away. The
kinetic energy of the inaton gradually increases as it rolls down the potential towards the
global minimum. Eventually, its kinetic energy dominates over the potential energy and
ination comes to an end when _�2 � V (�). The �eld then oscillates rapidly about the
minimum and the couplings of � to other matter �elds then become important. It is these
oscillations that result in particle production and a reheating of the universe.

The simplest chaotic ination model is that of a free �eld with a quadratic potential,
V (�) = m2�2=2, where m represents the mass of the inaton. During ination the scale
factor grows as

a(t) = aie
2�(�2

i
��2(t)) (2.19)
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and ination ends when � = O(1)mPl. If ination begins when V (�i) � m4
Pl, the scale factor

grows by a factor exp(4�m2
Pl=m

2) before the inaton reaches the minimum of its potential
(Linde, 1990b). One can further show that the mass of the �eld should be m � 10�6mPl

if the microwave background constraints are to be satis�ed. This implies that the volume
of the universe will increase by a factor of Z3 � 103�10

12

and this is more than enough
ination to solve the problems of the hot big bang model.

It is important to emphasize that in this scenario the initial value of the scalar �eld is
randomly distributed in di�erent regions of the universe. On the other hand, one need only
assume that a small, causally connected, region of the pre{inationary universe becomes
dominated by the potential energy of the inaton �eld. Indeed, if the original domain is
only one Planck length in extent, its �nal size will be of the order 1010

12

cm; for comparison,
the size of the observable universe is approximately 1028 cm.

In conclusion, therefore, the chaotic inationary scenario represents a powerful frame-
work within which speci�c inationary models can be discussed. The essential features of
each model | such as the �nal reheat temperature and the amplitude of scalar and tensor
uctuations | are determined by the speci�c form of the potential function V (�). This in
turn is determined by the particle physics sector of the theory.

Unfortunately, however, there is currently much theoretical uncertainty in the correct
form of the uni�ed �eld theory above the electroweak scale. This has resulted in the devel-
opment of a large number of di�erent inationary scenarios and the identity of the inaton
�eld is therefore somewhat uncertain. Possible candidates include the Higgs bosons of grand
uni�ed theories, the extra degrees of freedom associated with higher metric derivatives in
extensions to general relativity, the dilaton �eld of string theory and, more generally, the
time{varying gravitational coupling that arises in scalar{tensor theories of gravity.

It is not the purpose of this review to discuss the relative merits of di�erent models, since
this has been done elsewhere (Kolb and Turner, 1990; Linde, 1990b; Olive, 1990; Liddle
and Lyth, 1993a). Traditionally, a speci�c potential with a given set of coupling constants
is chosen. The theoretical predictions of the model are then compared with large{scale
structure observations. The region of parameter space consistent with such observations
may then be identi�ed (Liddle and Lyth, 1993a). However, it is di�cult to select a unique
inationary model by this procedure due to the large number of plausible models available.

In view of the above uncertainties and motivated by recent and forthcoming advances in
observational cosmology, our aim will be to address the question of whether direct insight
into the nature of the inaton potential may be gained by studying the large{scale structure
of the universe. We therefore assume nothing about the potential except that it leads to an
epoch of inationary expansion.

We will proceed in the remainder of this Section by reviewing a formalism that allows
the classical dynamics of the scalar �eld during ination to be studied in full generality.
This formalism may then be employed to discuss the generation of quantum uctuations in
the inaton and gravitational �elds.

B Scalar �eld dynamics in inationary cosmology

In view of the discussion in the previous Subsection, we will assume throughout this work
that the universe was dominated during ination by a single scalar �eld � with a self-
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interaction potential V (�), the form of which it is our aim to determine. We shall further
assume that gravity is adequately described by Einstein's theory of general relativity. We
shall therefore employ the four-dimensional action

S = �
Z
d4x

p�g
"
m2

PlR

16�
� 1

2
(r�)2 + V (�)

#
; (2.20)

where R is the Ricci curvature scalar of the space{time with metric g�� and g � detg�� .
Actually, these restrictions are not as strong as they seem. For example, even theories

such as hybrid ination, which feature multiple scalar �elds, are usually dynamically dom-
inated by only one degree of freedom (Linde, 1990a, 1991, 1994; Copeland et al., 1994b;
Mollerach, Matarrese, and Lucchin, 1994). Many other models invoke extensions to general
relativity, and much e�ort has been devoted to studying ination in the Bergmann-Wagoner
class of generalized scalar-tensor theories (Bergmann, 1968; Wagoner, 1970) and higher-
order pure gravity theories in which the Einstein-Hilbert lagrangian is replaced with some
analytic function f(R) of the Ricci curvature. Such theories can normally be rewritten via
a conformal transformation as general relativity plus one or more scalar �elds, again with
the possibility that only one such �eld is dynamically relevant (Higgs, 1959; Whitt, 1984;
Barrow and Cotsakis, 1988; Maeda, 1989; Kalara, Kaloper, and Olive, 1990; Lidsey, 1992;
Wands, 1994).

We are unable to discuss models where more than one �eld is dynamically important
in the reconstruction context. While considerable progress has been made recently in un-
derstanding the perturbation spectra from these models (Starobinsky and Yokoyama, 1995;
Garc��a-Bellido and Wands, 1995, 1996; Sasaki and Stewart, 1996; Nakamura and Stew-
art, 1996), the extra freedom of the second �eld thwarts any attempt at �nding a unique
reconstruction, though it is possible to �nd some general inequalities relating the spectra
(Sasaki and Stewart, 1996). These problems arise both because there is no longer a unique
trajectory, independent of initial conditions, into the minimum of the potential, and be-
cause with a second �eld one can generate isocurvature perturbations as well as adiabatic
ones. Fortunately, it appears that it is hard, though not impossible, to keep models of this
kind consistent with observation, as the density perturbations tend to be large whatever
the energy scale of ination (Garc��a-Bellido, Linde, and Wands, 1996). A completely dif-
ferent way of using two �elds is to drive successive periods of ination, as in the double
ination scenario (Polarski and Starobinsky, 1995 and refs therein). This can impose very
sharp features in the spectra which, although rather distinctive, are not amenable to the
perturbative approach that reconstruction requires.

As we saw above, the accelerated expansion during ination causes the spatial hyper-
surfaces to rapidly tend towards atness. Moreover, any initial anisotropies and inhomo-
geneities in the universe are washed away beyond currently observable scales by the rapid
expansion. Since only the �nal stages of the accelerated expansion are important from an
observational point of view, we can assume that the space-time metric may be described as
a spatially at FRW metric, given by

ds2 = L2(t)dt2 � e2�(t)[dx2 + dy2 + dz2] ; (2.21)

where L(t) represents the lapse function and a(t) = e�(t) is the scale factor of the universe.
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By taking this metric, we prevent ourselves from studying reconstruction in the recently
discovered versions of ination giving an open universe (Gott, 1982; Gott and Statler, 1984;
Sasaki et al., 1993; Bucher et al., 1995; Linde, 1995; Linde and Mezhlumian, 1995). In fact
these models have not yet been developed su�ciently to provide the information we need
| in particular the gravitational wave spectrum has not been predicted | and the gener-
alization of the reconstruction program to these models must await further developments.

Our analysis will however apply in full to low-density cosmological models where the
spatial geometry is kept at by the introduction of a cosmological constant (or similar mech-
anism). Our discussion is entirely focussed on the initial spectra, which are independent
of the material composition of the universe at late times. Of course, in such a cosmology
the details of going between these spectra and actual observables will be changed, and the
impact of this on reconstruction has been studied by Turner and White (1995).

Substitution of the metric ansatz Eq. (2.21) into the theory given by Eq. (2.20) leads to
an Arnowitt, Deser and Misner (ADM) (1962) action of the form

S =

Z
dtULe3�

"
�3m2

Pl

8�

_�2

L2
+
1

2

_�2

L2
� V (�)

#
; (2.22)

where U � R d3x is the comoving volume of the universe and a dot denotes di�erentiation
with respect to t. Without loss of generality we may normalize the comoving volume to
unity.

In recent years, considerable progress in the treatment of scalar �elds within the envi-
ronment of the very early universe has been made. The approach we adopt in this work
is to view the scalar �eld itself as the dynamical variable of the system (Grishchuk and
Sidorav, 1988; Muslimov, 1990; Salopek and Bond, 1990, 1991; Lidsey, 1991b). This allows
the Einstein-scalar �eld equations to be written as a set of �rst-order, non-linear di�erential
equations.

The Hamiltonian constraint H = 0 is derived by functionally di�erentiating the action
Eq. (2.22) with respect to the non-dynamical lapse function. One arrives at the Hamilton-
Jacobi equation

� 4�

3m2
Pl

�
@S

@�

�2
+

�
@S

@�

�2
+ 2e6�V (�) = 0 ; (2.23)

where the momenta conjugate to � and � are p� = @S=@� = �3m2
Ple

3� _�=4�L and p� =
@S=@� = e3� _�=L, respectively. This equation follows from the invariance of the theory
under reparametrizations of time. The classical dynamics of this model is determined by
the real, separable solution

S = �m2
Pl

4�
e3�H(�) ; (2.24)

where H(�) satis�es the di�erential equation (Grishchuk and Sidorav, 1988; Muslimov,
1990; Salopek and Bond, 1990, 1991)

�
dH

d�

�2
� 12�

m2
Pl

H2(�) = �32�2

m4
Pl

V (�) : (2.25)
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In the gauge L = 1, substitution of ansatz Eq. (2.24) into the expressions for the conjugate
momenta implies that

H(�) = _� ; �m2
Pl

4�

dH

d�
= _� : (2.26)

Thus, H(�) represents the Hubble expansion parameter expressed as a function of the
scalar �eld �. It follows immediately from the second of these expressions that _H < 0.
Consequently, the physical Hubble radius H�1 increases with time as the inaton �eld
rolls down its potential. The Hubble radius can only remain constant if the inaton �eld
is trapped in a meta-stable false vacuum state; this is forbidden in the context of `old'
ination as it can never successfully escape this state, but may be possible in the context
of single-bubble open inationary models which are outside the scope of this paper (see,
for example, Sasaki et al., 1993; Bucher et al., 1994; Bucher, Goldhaber, and Turok, 1995;
Linde, 1995).

The solution to Eq. (2.25) depends on an initial condition, the value of H at some initial
� (Salopek and Bond, 1990, 1991). If we are to obtain unique results, the late-time evolution
(that is, the evolution during which the perturbations we see are generated) of H in terms
of the scalar �eld must be independent of the initial condition chosen, and fortunately one
can easily show that this is the case (Salopek and Bond, 1990; Liddle et al., 1994); the
late-time behavior is governed by an inationary `attractor' solution, which is approached
exponentially quickly during ination.

The Hamilton{Jacobi formalism we have outlined is equivalent to the more familiar
version of the equations of motion given by Eqs. (2.16) and (2.17) (for k = 0). Eq. (2.25)
is equivalent to the time{time component of the Einstein �eld equations and therefore
represents the Friedmann equation (2.16). In the form given by Eqs. (2.16) and (2.17), _�
is an initial condition at some value of t; in the Hamilton-Jacobi formalism the equivalent
freedom allows one to specify H at some initial value of �.

The above analysis of the Hamilton{Jacobi formalism assumes implicitly that the value
of the scalar �eld is a monotonically varying function of cosmic time. In particular, it breaks
down if the �eld undergoes oscillations (though one can attempt to patch together separate
solutions). As a result, this formalism is not directly suitable for investigating the dynamics
of a �eld undergoing oscillations in a minimum of the potential, for example. However, the
scalar and tensor uctuations relevant to large-scale structure observations are generated
when the �eld is still some distance away from the potential minimum. Moreover, the piece
of the potential corresponding to these scales is relatively small, so it is reasonable to assume
that the potential is a smoothly decreasing function in this regime. The scalar �eld will
therefore roll down this part of the potential in an unambiguous fashion. In the following,
we will assume, without loss of generality, that _� > 0, so that H 0(�) < 0. This choice allows
us to �x the sign of any prefactors that arise when square roots appear.

In principle, the Hamilton{Jacobi formalism enables us to treat the dynamical evolution
of the scalar �eld exactly, at least at the classical level. In practice, however, the separated
Hamilton-Jacobi equation, Eq. (2.25), is rather di�cult to solve. On the other hand, the
analysis can proceed straightforwardly once the functional form of the expansion parameter
H(�) has been determined. This suggests that one should view H(�) as the fundamental
quantity in the analysis (Lidsey, 1991a, 1993). This is in contrast to the more traditional
approaches to inationary cosmology, whereby the particle physics sector of the model |
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as de�ned by the speci�c form of the inaton potential V (�) | is regarded as the input
parameter. In the reconstruction procedure, however, the aim is to determine this quantity
from observations, so one is free to choose other quantities instead. It proves convenient to
express the scalar and tensor perturbation spectra in terms of H(�) and its derivatives.

Unfortunately, exact expressions for these perturbations have not yet been derived in full
generality. All calculations to date have employed some variation of the so-called `slow-roll'
approximation (Steinhardt and Turner, 1984; Salopek and Bond, 1990; Liddle and Lyth,
1992; Liddle et al., 1994). It is important to emphasize that there are two di�erent versions
of the slow-roll approximation, with their attendant slow-roll parameters �, �, etc, depending
on whether one is taking the potential or the Hubble parameter as the fundamental quantity
| the di�erences are described in considerable detail in Liddle et al. (1994). Here we are
de�ning them in terms of the Hubble parameter.

We represent the slow-roll approximation as an expansion in terms of quantities derived
from appropriate derivatives of the Hubble expansion parameter. Since at a given point each
derivative is independent, there are in general an in�nite number of these terms. Typically,
however, only the �rst few enter into any expressions of interest. We de�ne the �rst three
as1:

�(�) � 3 _�2

2

�
V +

1

2
_�2
��1

=
m2

Pl

4�

�
H 0(�)

H(�)

�2
; (2.27)

�(�) � �
��

H _�
=

m2
Pl

4�

H 00(�)

H(�)
= �� mPl �

0

p
16��

; (2.28)

�(�) � m2
Pl

4�

�
H 0(�)H 000(�)

H2(�)

�1=2
=

0
@�� �

 
m2

Pl �

4�

!1=2
�0

1
A
1=2

: (2.29)

One need not be concerned as to the sign of the square root in the de�nition of �; it turns
out that only �2, and not � itself, will appear in our formulae (Liddle et al., 1994). We

emphasize that the choice _� > 0 implies that
p
� = �

q
m2

Pl=4� H
0=H.

Modulo a constant of proportionality, � measures the relative contribution of the �eld's
kinetic energy to its total energy density. The quantity �, on the other hand, measures
the ratio of the �eld's acceleration relative to the friction acting on it due to the expansion
of the universe. The slow-roll approximation applies when these parameters are small in
comparison to unity, i. e. f�; j�j; �g � 1; this corresponds to being able to neglect the �rst
term in Eq. (2.25) and its �rst few derivatives. Ination proceeds when the scale factor
accelerates, �a > 0, and this is precisely equivalent to the condition � < 1. Ination ends
once � exceeds unity. It is interesting that the conditions leading to a violation of the
strong energy condition are uniquely determined by the magnitude of � alone. In principle,
ination can still proceed if j�j or j�j are much larger than unity, though normally such
values would drive a rapid variation of � and bring about a swift end to ination.

1Note that the de�nition of the third parameter is di�erent to that made in CKLL2, �CKLL2 =

(m2

Pl=4�)H
000=H 0. The two are related by �2 = ��CKLL2. The former de�nition has proven awkward;

because of the derivative on the denominator it need not be small in the scale-invariant limit (though the
combination

p
��CKLL2 must be). We choose to use this better de�nition, as introduced by Liddle et al.

(1994) who give further details and a collection of useful formulae.
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For speci�c results, we shall not go beyond these three parameters. However, in general
one can de�ne a full hierarchy of slow-roll parameters (Liddle et al., 1994):

�n �
(

nY
i=1

"
�d lnH(i)

d lna

#) 1

n

;

=
m2

Pl

4�

 
(H 0)n�1H(n+1)

Hn

! 1

n

; (2.30)

where �1 � �, �2 � �, etc, and a superscript (m) indicates the m-th derivative with respect
to �. The � parameter has to be de�ned separately, though it may be referred to as �0.

These slow-roll parameters, along with analogues de�ned in terms of the potential, can
be used as the basis for a slow-roll expansion to derive arbitrarily accurate solutions given
a particular choice of potential. However, this formalism is not necessary when making
general statements about ination without demanding a speci�c potential.

The amount of inationary expansion within a given timescale is most easily paramet-
rized in terms of the number of e-foldings that occur as the scalar �eld rolls from a particular
value � to its value �e when ination ends:

N(�; �e) �
Z te

t
H(t)dt = � 4�

m2
Pl

Z �e

�
d�

H(�)

H 0(�)
: (2.31)

Thus, with the help of Eq. (2.31), we may relate the value of the scale factor a(�) = e�(�)

at any given epoch during ination directly to the value of the scale factor at the end of
ination, ae:

a(�) = ae exp[�N(�)] : (2.32)

An extremely useful formula is that which connects the two epochs at which a given
scale equals the Hubble radius, the �rst during ination when the scale crosses outside and
the second much nearer the present when the scale crosses inside again. A comoving scale
k crosses outside the Hubble radius at a time which is N(k) e-foldings from the end of
ination, where

N(k) = 62� ln
k

a0H0
� ln

1016GeV

V
1=4
k

+ ln
V
1=4
k

V
1=4
end

� 1

3
ln
V
1=4
end

�
1=4
reh

: (2.33)

The subscript `0' indicates present values; the subscript `k' speci�es the value when the
wave number k crosses the Hubble radius during ination (k = aH); the subscript `end'
speci�es the value at the end of ination; and �reh is the energy density of the universe
after reheating to the standard hot big bang evolution. This calculation assumes that
instantaneous transitions occur between regimes, and that during reheating the universe
behaves as if matter-dominated.

It is fairly standard to make a generic assumption about the number of e-foldings before
the end of ination at which the scale presently equal to the Hubble radius crossed outside
during ination; most commonly one sees this number taken as either 50 or 60. Within the
context of making predictions from a given potential this can have a slight e�ect on results,
but it is completely unimportant as regards reconstruction.
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What we do need for reconstruction is a measure of how rapidly scales pass outside
the Hubble-radius as compared to the evolution of the scalar �eld; this is essential for
calculating such quantities as the spectral indices of scalar and tensor perturbations. The
formal de�nition we take of a scale matching the Hubble radius is that k = aH. Then one
can write

k(�) = aeH(�) exp[�N(�)] ; (2.34)

where N(�) is given by Eq. (2.31). Di�erentiating with respect to � therefore yields

d ln k

d�
=

4�

m2
Pl

H

H 0
(�� 1) : (2.35)

This concludes our discussion on the classical dynamics of the scalar �eld during in-
ation. In the following Section, we will proceed to discuss the consequences of quantum
uctuations that arise in both the inaton and graviton �elds.

III The Quantum Generation of Perturbations

During ination, the inaton and graviton �elds undergo quantum-mechanical uctuations.
The most important observational consequences of the inationary scenario derive from the
signi�cant e�ects these perturbations may have on the large-scale structure of the universe
at the present epoch. In this Section we shall discuss how these uctuations arise and present
expressions for their expected amplitudes. Since the inaton and gravitational perturbations
are produced in a similar fashion, we shall begin with a qualitative description of the e�ects
of the former. We shall then proceed with an extensive account of the calculation of both
spectra by Stewart and Lyth (1993), which is the most accurate analytic treatment presently
available.

A Qualitative discussion

Fluctuations in the inaton �eld lead to a stochastic spectrum of density (scalar) pertur-
bations (Guth and Pi, 1982; Hawking, 1982; Linde, 1982b; Starobinsky, 1982; Bardeen et
al., 1983; Lyth, 1985; Mukhanov, 1985; Sasaki, 1986; Mukhanov, 1989; Salopek, Bond, and
Bardeen, 1989). Physically, these arise because the inaton �eld reaches the global mini-
mum of its potential at di�erent times in di�erent places in the universe. This results in
a time shift in how quickly the rollover occurs. Thus, constant �� does not correspond to
a constant-time hypersurface; in other words, there is a density distribution produced by
the kinetic energy of the inaton �eld for a given constant-time hypersurface. It is widely
thought that these density perturbations result in the formation of large-scale structure in
the universe via the process of gravitational instability. They may also be responsible for
anisotropic structure in the temperature distribution of the cosmic microwave background
radiation.

Typically, the inationary scenario predicts that the spectrum of density perturbations
should be gaussian and scale-dependent. This is certainly true for the class of models that
we shall be considering here, in which it is assumed that the inaton �eld is weakly coupled.
However, one should bear in mind that the prediction of gaussianity is not generic to all
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inationary models; it is possible to contrive models with nongaussian perturbations by
introducing features in just the right part of the inationary potential (Allen, Grinstein,
and Wise, 1987; Salopek and Bond, 1990).

The historical viewpoint on the scale-dependence of the uctuations was that they were
of scale-invariant (Harrison{Zel'dovich) form, though it had been recognized that the scale-
invariance was only approximate (Bardeen et al., 1983; Lucchin and Matarrese, 1985a).
This is because the scalar �eld must be undergoing some kind of evolution if ination is to
end eventually, and this injects a scale-dependence into the spectra. As we shall see, this
e�ect should be easy to measure.

To take advantage of accurate observations, it is imperative that the spectra be calcu-
lated as accurately as possible. However, let us �rst make a qualitative discussion of the
generation mechanism.

In a spatially at, isotropic and homogeneous universe, the Hubble radius, H�1(t),
represents the scale beyond which causal processes cannot operate. The relative size of a
given scale to this quantity is of crucial importance for understanding how the primordial
spectrum of uctuations is generated. Quantities such as the power spectrum are de�ned
via a Fourier expansion as functions of comoving wavenumber k, and the combination k=aH
appears in many equations. Di�erent physical behavior occurs depending on whether this
quantity is much greater or smaller than unity.

Ination is de�ned as an epoch during which the scale factor accelerates, and so the
comoving Hubble radius, (aH)�1, must necessarily decrease. This is an important feature
of the inationary scenario, because it means that physical scales will grow more rapidly
than the Hubble radius. As a result, a given mode will start within the Hubble radius. In
this regime the expansion is negligible and the microphysics in operation at that epoch will
therefore be relevant. This is determined by the usual at-space quantum �eld theory for
which the vacuum state of the scalar �eld uctuations is well understood. As the inationary
expansion proceeds, however, the mode grows much more rapidly than the Hubble radius
(in physical coordinates) and soon passes outside it. One can utilize a Heisenberg picture
of quantum theory to say that the operators obey the classical equations of motion, and
so the evolution of the vacuum state can be followed until it crosses outside the Hubble
radius. At this point the microphysics e�ectively becomes `frozen'. It turns out that the
asymptotic state is not a zero-particle state | particles are created by the gravitational
�eld. Corresponding perturbations in the gravitational �eld itself are also generated, so a
spectrum of gravitational wave (tensor) uctuations is independently produced by the same
mechanism.

Once ination is over, the comoving Hubble radius begins to grow. Eventually, therefore,
the mode in question is able to come back inside the Hubble radius some time after ination.
The overall result is that perturbations arising from uctuations in the inaton �eld can be
imprinted onto a given length scale during the inationary epoch when that scale �rst leaves
the Hubble radius. These will be preserved whilst the mode is beyond the Hubble radius
and will therefore be present when the scale re-enters during the radiation-dominated or
matter-dominated eras.
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B Quantitative analysis

If one is to take full advantage of the observations to the extent one hopes, it is crucial
to have extremely accurate predictions for the spectra induced by di�erent inationary
models. For example, microwave background theorists have set themselves the stringent
goal of calculating the radiation angular power spectrum (the Cl discussed later in this
paper) to within one percent (Hu et al., 1995), in the hope that satellite observations may
one day provide extremely accurate measurements of the anisotropies across a wide range of
angular scales (Tegmark and Efstathiou, 1996). This involves a detailed treatment with a
host of subtle physical e�ects. If inationary models are to capitalize on this sort of accuracy,
it is essential to have as accurate a determination as possible of the initial spectra which
are to be input into such calculations. Given that the slow-roll parameters are typically at
least a few percent, that implies that a determination of the spectra to at least one order
beyond leading order in the slow-roll expansion is desired.

The calculations we make are based on linear perturbation theory. Since the observed
anisotropies are small, this approximation is considerably more accurate than the slow-roll
approximation, and we need not attempt to go beyond it, though it is possible to extend
calculations beyond linear perturbation theory (Durrer and Sakellariadou, 1994).

Before proceeding, however, let us clarify a notational point. In earlier literature, espe-
cially CKLL2 and Liddle and Turner (1994), orders were referred to as �rst-order, second-
order etc. However, we feel this can be misleading, because it might suggest that all
terms containing say two slow-roll parameters in any given expression are supposed to be
neglected. This is not the intention, because in many expressions the lowest-order term
already contains one or more powers of the slow-roll parameters. Because di�erentiation
respects the order-by-order expansion, while multiplying each term by a slow-roll parame-
ter, it is always valid to take terms to the same number of orders, however many slow-roll
parameters the actual terms possess. Therefore, in order to clarify the meaning, we choose
to always employ the phrase lowest-order to indicate the term containing the least number
of powers of the slow-roll parameters, however many that may be for a speci�c expression.
The phrase next-to-lowest order, abbreviated to next-order, then indicates correction terms
to this which contain one further power of the slow-roll parameters than the lowest-order
terms.

The calculation of the spectra to next-order has been provided by Stewart and Lyth
(1993). Because of its crucial importance, we shall devote quite some time to describing
it. The basic principle is to start with the one known situation where the spectra can be
calculated exactly, that of power-law ination. This corresponds to each of the slow-roll
parameters having the same constant value. To next-order, a general inationary potential
can be considered via an expansion in (� � �) about a power-law ination model with the
same �; as we shall see, it is an adequate approximation to treat � and � as di�erent constant
values.

In fact, the logic we develop is slightly di�erent to that of Stewart and Lyth (1993). They
computed an exact solution for the situation where � and � are treated as exactly constant
with di�erent values. Formally, this situation does not exist as � precisely constant implies
� = �. They then treated power-law ination as an exact special case of this situation, and
a general ination model to next-order as an expansion about their more general result.
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Logically, it is more accurate to expand directly about the exact power-law ination result,
but nevertheless the �nal answer is guaranteed to be the same.

1 Scalar perturbations

Throughout the calculations to derive the spectra of scalar and tensor uctuations, the
space-time representing our universe is decoupled into two components, representing the
background and perturbation contributions. The background part is taken to be the homo-
geneous and isotropic FRW metric. This is a reasonable assumption to make in view of the
high degree of spatial uniformity in the temperature of the cosmic microwave background.
In this paper we assume the background is also spatially at with a line element given by
Eq. (2.21). The perturbed sector of the metric then determines by how much the actual
universe deviates from this idealization.

Four quantities are required to specify the general nature of a scalar perturbation.
These may be denoted by A, B, 	 and E and these are functions of the space and time
coordinates. It has been shown by Bardeen (1980) and by Kodama and Sasaki (1984) that
the most general form of the line element for the background and scalar metric perturbations
is given by

ds2 = a2(�)
h
(1 + 2A)d�2 � 2@iBdx

id� � [(1� 2	)�ij + 2@i@jE] dx
idxj

i
; (3.1)

where � � R dt=a(t) is conformal time.
The perturbations can be measured by the intrinsic curvature perturbation of the co-

moving hypersurfaces, which has the form

R = �	� H

_�
�� ; (3.2)

during ination, where �� represents the uctuation of the inaton �eld and _� and H are
calculated from the background �eld equations Eqs. (2.25)-(2.26). To proceed, we follow
Mukhanov, Feldman and Brandenberger (1992) and introduce the gauge-invariant potential

u � a

"
��+

_�

H
	

#
: (3.3)

It also proves convenient to introduce the variable

z � a _�

H
; (3.4)

and it follows immediately that
u = �zR : (3.5)

The evolution of the perturbations is determined by the Einstein action. The �rst-
order perturbation equations of motion are given by a second-order action. Hence, the
gravitational and matter sectors are separated and each expanded to second-order in the
perturbations. The result for the gravitational component is simpli�ed by employing the
ADM form of the action (Arnowitt, Deser, and Misner, 1962; Misner et al., 1973). The
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action for the matter perturbations, on the other hand, can be calculated by expanding the
Lagrangian as a Taylor series about a �xed value of the scalar �eld, applying the background
�eld equations and integrating by parts. Mukhanov et al. (1992) show that the full action
for linear scalar perturbations is given by

S =

Z
d4xL =

1

2

Z
d�d3x

�
(@�u)

2 � �ij@iu@ju+
z��

z
u2
�
; (3.6)

where a subscript � denotes partial di�erentiation with respect to conformal time. For
further details the reader is referred to Mukhanov (1989) and Makino and Sasaki (1991).

Formally, this is equivalent to the action for a scalar �eld in at space-time with a
time-dependent e�ective mass m2 = �z��=z. This equivalence implies that one can con-
sider the quantum theory in an analogous fashion to that of a scalar �eld propagating on
Minkowski space-time in the presence of a time-varying external �eld (Grib, Mamaev, and
Mostepanenko, 1980). The time-dependence has its origin in the variation of the background
space-time (Birrell and Davies, 1982).

The momentum canonical to u is given by

�(�;x) =
@L

@(u� )
= u� (�;x) ; (3.7)

and the theory is then quantized by promoting u and its conjugate momentum to operators
that satisfy the following commutation relations on the � = constant hypersurfaces:

[û(�;x); û(�;y)] = [�̂(�;x); �̂(�;y)] = 0 ; (3.8)

[û(�;x); �̂(�;y)] = i�(3)(x� y) : (3.9)

We expand the operator û(�;x) in terms of plane waves

û(�;x) =

Z
d3k

(2�)3=2

h
uk(�)âke

ik:x + u�k(�)â
y

k
e�ik:x

i
; (3.10)

and the �eld equation for the coe�cients uk is derived by setting the variation of the action
Eq. (3.6) with respect to u equal to zero. It is given by (Mukhanov, 1985, 1988; Stewart
and Lyth, 1993)

d2uk

d�2
+

 
k2 � 1

z

d2z

d�2

!
uk = 0 : (3.11)

These modes are normalized so that they satisfy the Wronskian condition

u�k
duk

d�
� uk

du�k
d�

= �i ; (3.12)

and this condition ensures that the creation and annihilation operators ây
k
and âk satisfy

the usual commutation relations for bosons:

[âk; âl] = [ây
k
; â
y

l
] = 0; [âk; â

y

l
] = �(3)(k� l) : (3.13)

The vacuum is therefore de�ned as the state that is annihilated by all the âk, i. e., âkj0i = 0.
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The modes uk(�) must have the correct form at very short distances so that ordinary
at space-time quantum �eld theory is reproduced. Thus, in the limit that k=aH ! 1,
the modes should approach plane waves of the form

uk(�)! 1p
2k

e�ik� : (3.14)

In the opposite (long wavelength) regime where k can be neglected in Eq. (3.11), we see
immediately that the growing mode solution is

uk / z ; (3.15)

with no dependence on the behavior of the scale factor (except insofar as implicitly through
the de�nition of z).

Ultimately, the quantity in which we are interested is the curvature perturbation R. We
expand this in a Fourier series

R =

Z
d3k

(2�)3=2
Rk(�)e

ik:x : (3.16)

The power spectrum PR(k) can then be de�ned in terms of the vacuum expectation value

hRkR�
l i =

2�2

k3
PR�(3)(k� l) ; (3.17)

where the prefactor is in a sense arbitrary but is chosen to obey the usual Fourier con-
ventions. The left-hand side of this expression may be evaluated by combining Eqs. (3.5),
(3.13) and (3.16):

hRkR�
l i =

1

z2
jukj2�(3)(k� l) ; (3.18)

yielding

P1=2
R (k) =

s
k3

2�2

����ukz
���� : (3.19)

For modes well outside the horizon, the growing mode of uk will dominate and so the
spectrum will approach a constant value. It is this value that we are aiming to calculate.

In order to provide a solution, we need an expression for z��=z. This can be straight-
forwardly obtained as

1

z

d2z

d�2
= 2a2H2

�
1 + �� 3

2
� + �2 � 2�� +

1

2
�2 +

1

2
�2
�
; (3.20)

and despite its appearance as an expansion in slow-roll parameters, this expression is exact.

Exact solution for power-law ination

So far, all the expressions we have written down have been exact. However, we have
reached the limit of analytic progress for general circumstances. The desired situation then
is to obtain an exact solution for some special case, about which a general expansion can be
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applied in terms of the slow-roll parameters. Such an exact solution is the case of power-law
ination, which we now derive2.

Power-law ination, where the scale factor expands as a(t) / tp, corresponds to the
particularly simple case where the Hubble parameter is exponential in � (Lucchin and
Matarrese, 1985a, 1985b):

H(�) / exp

 s
4�

p

�

mPl

!
: (3.21)

It follows that the slow-roll parameters are not only constant but equal; we are primarily
interested in

� = � = � =
1

p
: (3.22)

With a constant �, an integration by parts

� =

Z
da

a2H
= � 1

aH
+

Z
� da

a2H
; (3.23)

supplies the conformal time as

� = � 1

aH

1

1� �
: (3.24)

Thus, � is negative during ination, with � = 0 corresponding to the in�nite future.
Since the slow-roll parameters in Eq. (3.20) are constant, Eq. (3.11) simpli�es to a Bessel

equation of the form "
d2

d�2
+ k2 � (�2 � 1

4)

�2

#
uk = 0 ; (3.25)

where

� � 3

2
+

1

p� 1
: (3.26)

The appropriately normalized solution with the correct asymptotic behavior at small scales
is therefore given by3

uk(�) =

p
�

2
ei(�+1=2)�=2(��)1=2H(1)

� (�k�) ; (3.27)

where H
(1)
� is the Hankel function of the �rst kind of order �.

Ultimately, we are interested in the asymptotic form of the solution once the mode is
well outside the horizon. Taking the limit k=aH ! 0 yields the asymptotic form

uk ! ei(��1=2)�=22��3=2
�(�)

�(3=2)

1p
2k

(�k�)��+1=2 ; (3.28)

and substituting this into Eq. (3.19) gives the asymptotic form of the power spectrum

P1=2
R (k) = 2��1=2

�(�)

�(3=2)
(� � 1=2)1=2��

1

m2
Pl

H2

jH 0j

�����
k=aH

; (3.29)

2It is at this point that our construction of the expansion begins to di�er in logical construction from
Stewart and Lyth (1993), though the �nal result will agree.

3The choice of phase factor ensures that the behavior described by Eq. (3.14) is reproduced at short
scales, and the factor of

p
�=2 implies that condition Eq. (3.12) is satis�ed.
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where we have employed Eq. (3.24) to substitute for k� . A subtle point is that, despite the
appearance of this equation, the calculated value for the spectrum is not the value when the
scale crosses outside the Hubble radius. Rather, it is the asymptotic value as k=aH ! 0,
but rewritten in terms of the values which quantities had at Hubble radius crossing.

This exact expression for the asymptotic power spectrum was �rst derived in an earlier
paper by Lyth and Stewart (1992). It is one of only two known exact solutions, and is the
only one for a realistic inationary scenario. The other known exact solution, found by
Easther (1996), arises in an arti�cial model designed to permit exact solution, and while of
theoretical interest is excluded by observations.

Slow-roll expansion for general potentials

Having obtained an exact solution, we can now make an expansion about it. The power-
law ination case corresponded to the slow-roll parameters being equal, and hence exactly
constant; we now wish to allow them to be di�erent which means they will pick up a time
dependence.

At this stage, there is no need to require that the parameter � be small, for the exact
solution exists for all � < 1. However, the deviation of all higher slow-roll parameters from
� must indeed be small, since the di�erences vanish for the exact solution. Let us label the
�rst of these as � = �� �. There are in general an in�nite number of such small parameters
in the expansion but we shall only need this one.

The �rst step is to �nd a more general equation for � . By integrating by parts in the
manner of Eq. (3.23) an in�nite number of times, one can obtain

� = � 1

aH

1

1� �
� 2��

aH
+ expansion in slow-roll parameters � etc. ; (3.30)

where � can now have arbitrary time dependence. This is all very well, but even via an
expansion in small � one cannot analytically solve Eq. (3.11) for a general time-dependent �;
we must resort to a situation where aH� can be taken as constant for each k-mode (though
not necessarily the same constant for di�erent k). The relevant equation to study is the
exact relation

_�=H = 2�� : (3.31)

What we are aiming to do is to shift the time dependence of � to next-order in the expansion,
so that it can be neglected. This is achieved by assuming that � is a small parameter as well
as � (that is, that both � and � are small), in which case one can expand to lowest-order to
get

� = � 1

aH
(1 + �) : (3.32)

We will return to the question of the error in assuming constant � shortly.
Having this expression for � , we can now immediately use Eq. (3.20), which must also

be truncated to �rst-order. This gives the same Bessel equation Eq. (3.25), but now with �

given by

� =
3

2
+ 2�� � : (3.33)
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The assumption that treats � as constant also allows � to be taken as constant, but crucially,
� and � need no longer be the same since we are consistent to �rst-order in their di�erence.
The di�erences between further slow-roll parameters and � lead to higher order e�ects, and
so incorporating � and � in this manner is applicable to an arbitrary inaton potential to
next-order. The same solution Eq. (3.29) can be used with the new form of �, but for
consistency it should be expanded to the same order. This gives the �nal answer, which is
true for general ination potentials to this order, of (Stewart and Lyth, 1993)

P
1=2
R (k) = [1� (2C + 1)�+C�]

2

m2
Pl

H2

jH 0j

�����
k=aH

; (3.34)

where C = �2 + ln 2 +  ' �0:73 is a numerical constant,  being the Euler constant
originating in the expansion of the Gamma function. Since the slow-roll parameters are to
be treated as constant, they can also be evaluated at horizon crossing.

Let us now return to the question of the error in assuming � is constant. The crucial
aspect is that the variation of � is only important around k = aH. In either of the two
extreme regimes the evolution of uk (in relation to z) is independent of it (Eqs. (3.14)
and (3.15)). Assuming the variation of � is only important for some unspeci�ed but �nite
number of e-foldings, Eq. (3.31) measures that change (per e-folding). As long as we are
assuming � small as well as �, that change is next-order and can be neglected along with all
the other next-order terms we did not attempt to include.

Finally, one can see from the complexity of this calculation the obstacles to obtaining
general expressions which go to yet another higher order. This would involve �nding some
way of solving the Bessel-like equation in the situation where its coe�cients could not be
treated as constant.

This concludes our discussion on the generation of scalar perturbations during ina-
tion. In the remainder of this Section we will present the analogous result for the tensor
uctuations.

2 Gravitational waves

The propagation of weak gravitational waves on the FRW background was investigated by
Lifshitz (1946). Quantum uctuations in the gravitational �eld are generated in a similar
fashion to that of the scalar perturbations discussed above. A gravitational wave may be
viewed as a ripple in the background space-time metric Eq. (2.21) and in general the linear
tensor perturbations may be written as g�� = a2(�)[��� + h�� ], where jh�� j � 1 denotes
the metric perturbation and ��� is the at space-time metric (Bardeen, 1980; Kodama and
Sasaki, 1984). In the transverse-traceless gauge, we have h00 = h0i = @ihij = �ijhij = 0,
and there are two independent polarization states (Misner et al., 1973). These are usually
denoted as � = +;�.

The gravitons are the propagating modes associated with these two states. The classical
dynamics of the gravitational waves is determined by expanding the Einstein-Hilbert action
to quadratic order in h�� and it can be shown that this action takes the form (Grishchuk,
1974, 1977)

Sg =
m2

Pl

64�

Z
d�d3xa2(�)@�h

i
j@

�hi
j : (3.35)
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It proves convenient to introduce the rescaled variable

P i
j(x) � (m2

Pl=32�)
1=2a(�)hij(x) ; (3.36)

and substitution of this expression into the action Eq. (3.35) implies that

Sg =
1

2

Z
d�d3x

��
@�Pi

j
��

@�P i
j

�
� �rs

�
@rPi

j
��

@sP
i
j

�
+
a��

a
Pi

jP i
j

�
; (3.37)

where we have ignored a total derivative. This expression resembles the equivalent action
Eq. (3.6) for the scalar perturbations. Indeed, we may interpret Eq. (3.37) as the action
for two scalar �elds in Minkowski space-time each with an e�ective mass squared given by
a��=a. This equivalence between the two actions implies that the procedure for quantizing
the tensor uctuations is essentially the same as in the scalar case.

We perform a Fourier decomposition of the gravitational waves by expanding P i
j :

P i
j =

X
�=+;�

Z
d3k

(2�)3=2
vk;�(�)�

i
j(k;�)e

ik:x : (3.38)

In this expression �ij(k;�) is the polarization tensor and satis�es the conditions �ij = �ji,
�ii = 0, ki�ij = 0 and �ij(k; �)�i

j�(k; �0) = ���0 . The analysis is further simpli�ed if we
choose �ij(�k; �) = ��ij(k; �), since this ensures that vk;� = v�

�k;�. We may consider each
polarization state separately. The e�ective graviton action during ination therefore takes
the form

Sg =
1

2

X
�=+;�

Z
d�d3k

�
(@� jvk;�j)2 �

�
k2 � a��

a

�
jvk;�j2

�
: (3.39)

We quantize by interpreting vk;�(�) as the operator

v̂k;�(�) = vk(�)âk;� + v�k(�)â
y

�k;� ; (3.40)

where the modes vk satisfy the normalization condition Eq. (3.12) and have the form given
by Eq. (3.14) as aH=k ! 0. This ensures that the creation and annihilation operators
satisfy

[âk;�â
y

l;�] = ����
(3)(k� l); âk;�j0i ; (3.41)

and the spectrum of gravitational waves Pg(k) is then de�ned by

hv̂k;�v̂�l;�i =
m2

Pla
2

32�

2�2

k3
Pg�(3)(k� l) : (3.42)

The �eld equation for uk, derived by varying the action Eq. (3.39), is

d2vk

d�2
+

 
k2 � 1

a

d2a

d�2

!
vk = 0 ; (3.43)

and the scale factor term can be written as

1

a

d2a

d�2
= 2a2H2

�
1� 1

2
�

�
: (3.44)
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This puts us in a very similar situation to that for the density perturbations. The situation is
simpli�ed since a appears directly in the equation of motion rather than z, but the strategy
is exactly the same.

For power-law ination we can again solve exactly by writing

a��

a
=

1

�2

�
�2 � 1

4

�
; (3.45)

where

� � 3

2
+

1

p� 1
: (3.46)

For power-law ination � and � coincide, though in general they do not. The appropriate
solution for vk is given by Eq. (3.27), as before, after replacing � with �. It follows, therefore,
that

P1=2
g (k) =

2p
�
2��1=2

�(�)

�(3=2)
(�� 1=2)1=2��

H

mPl

����
k=aH

; (3.47)

where Pg has been multiplied by a factor of 2 to account for the two polarization states.
This exact solution was �rst obtained by Abbott and Wise (1984a) and we note that for
power-law ination

P1=2
g

P1=2
R

=
4p
p
= 4

p
� : (3.48)

The �nal step is to carry out the expansion in the same way as in the scalar case to
yield the slow-roll expression for the tensor spectrum. This gives

� =
3

2
+ � ; (3.49)

and hence

P1=2
g (k) = [1� (C + 1)�]

4p
�

H

mPl

����
k=aH

: (3.50)

IV Lowest-Order Reconstruction

In the previous section we discussed the derivation of expressions for the two initial spectra

P1=2
R and P1=2

g , which were accurate to next-order in the slow-roll parameters. Before
proceeding, let's relate our notation to other notations that the reader may be familiar
with, which concern the present-day spectra. In order to derive these, one needs the transfer
functions T (k) and Tg(k) for both scalars (Efstathiou, 1990) and tensors (Turner, White,
and Lidsey, 1993) respectively, which describe the suppression of growth on scale k relative
to the in�nite wavelength mode. The transfer functions in general depend on a whole
range of cosmological parameters, as discussed later. The present-day spectrum of density
perturbations, denoted P (k), is given by

k3

2�2
P (k) =

�
k

aH

�4
T 2(k)PR(k) ; (4.1)
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whle the energy density (per octave) in gravitational waves is


g(k) =
1

24
T 2
g (k)Pg(k) : (4.2)

These expressions apply to a critical density universe; for models with a cosmological con-
stant they require generalization (see Turner and White, 1996). Note though that in the
following Sections, we shall always be working with (rescaled versions of) the initial spectra,
and not with the present-day spectra.

In this Section, we shall concentrate on the lowest-order situation, where all expressions
are truncated at the lowest-order. This is not equivalent to assuming that � and � are zero,
for in some expressions, such as the spectral indices, the lowest-order terms contain � and
�, as we shall see. This approximation can be regarded as being extremely useful for the
present state of observations. However, optimistically one hopes that future observations,
particularly satellite-based high resolution microwave background anisotropy observations,
will require a higher degree of accuracy as discussed in Section V.

A The consistency equation and generic predictions of ination

In the forthcoming analysis it will prove convenient to work with rescaled expressions for the

spectra P1=2
R and P1=2

g which we will use throughout the rest of the paper. To lowest-order
we obtain

AS(k) � 2P1=2
R =5 =

4

5

H2

m2
PljH 0j

�����
k=aH

; (4.3)

AT (k) � P1=2
g =10 =

2

5
p
�

H

mPl

����
k=aH

: (4.4)

The speci�c choice of normalizations is arbitrary4. The above choice ensures that AS

coincides precisely with the quantity �H as de�ned by Liddle and Lyth (1993a, Eq. (3.6)).
This parameter may be viewed as the density contrast at Hubble-radius-crossing. The
normalization for the tensor spectrum is then chosen so that to lowest-order � = A2

T =A
2
S .

During ination the scalar �eld slowly rolls down its self-interaction potential. This
causes the Hubble parameter to vary as a function of cosmic time and therefore with respect
to the scale at Hubble-radius crossing. The expressions for the perturbations therefore
acquire a dependence on scale and it is conventional to express this variation in terms of
spectral indices. In general, these indices are themselves functions of scale and there appear
to be two ways in which they may be de�ned. In the �rst case, one may simply write the
power spectra as

A2
S(k) = A2

S(k0)

�
k

k0

�~n(k)�1
; A2

T (k) = A2
T (k0)

�
k

k0

�~nT (k)
: (4.5)

4We remark that these expressions have di�erent prefactors to those contained in our original papers,
CKLL1 and CKLL2; while one normalization is as valid as any other, the normalizations chosen in those
papers were atypical of the literature. Those used here conform more readily with the conventions employed

in the existing literature and in particular with the Stewart and Lyth (1993) calculation. In fact, the
numerical di�erence is only 0.3%. The ratio of the tensor and scalar amplitudes is una�ected by this change.
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Although these de�nitions are completely general, they do require a speci�c choice of k0 to
be made. This feature implies that the de�nitions are non-local, a considerable drawback.
A more suitable alternative is to de�ne the spectral indices di�erentially via

n(k)� 1 � d lnA2
S

d lnk
; (4.6)

nT (k) � d lnA2
T

d lnk
: (4.7)

We shall adopt this second choice in this work. The two de�nitions coincide for power-law
spectra, where the indices are constant. In general, however, they are inequivalent.

At the level of approximation we are considering in this Section, the spectral indices
may be expressed directly in terms of the slow-roll parameters � and �. One calculates the
�rst derivatives of the amplitudes from Eqs. (4.3) and (4.4) with respect to � and converts
to derivatives with respect to wavenumber with the help of Eq. (2.35). It is straightforward
to show that

n(k)� 1 = 2� � 4� ; (4.8)

nT (k) = �2� : (4.9)

The conventional statement attached to these expressions is that ination predicts spec-
tra which to the presently desired accuracy can be approximated as power-laws; that is,
that the slow-roll parameters can be treated as constants. While this statement is formally
correct, it requires some discussion. In particular it is important to realize that the power-
law approximation has no direct connection to the slow-roll approximation, but rather is a
statement that the relevant observations cover only a limited range of scale and do so with
limited accuracy. As far as the derivations of the spectra are concerned, the approximation
is that for each scale the parameters can be treated as constant while that scale crosses
outside the Hubble radius. However, in this `adiabatic' approximation, there is no need
for those constant values to remain the same from scale to scale. Thus, the expressions
for the spectra can be applied across the complete range of scales. Although they are an
approximation at each scale, the approximation does not deteriorate when one attempts to
study a wider range of scales. The feature that dictates whether the spectra can be treated
as power-laws is that the range of scales over which observations can be made is quite small,
in terms of the range of � values, and taking additional derivatives of the spectra introduces
into the lowest-order result an extra power in the slow-roll parameters. For example, al-
though di�erentiating Eq. (4.8) gives the correct lowest-order expression for dn=d lnk, this
will be of order �2 and hence a small e�ect over the short range of scales large-scale structure
samples. Were large-scale structure able to sample, for example, scales encompassing twenty
orders of magnitude rather than four, the approximation by power-law would be liable to
break down for typical ination models. With high accuracy observations, the power-law
approximation represented by these lowest-order expressions may prove inadequate even
over the short range of accessible scales.

We emphasize that the spectral indices do not have to satisfy the exact power-law result
n � 1 = nT at this level of approximation. Each spectrum is uniquely speci�ed by its
amplitude and spectral index. The overall amplitude is a free parameter determined by
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the normalization of the expansion rate H during ination (or equivalently the scalar �eld
potential V ). On the other hand, the relative amplitude of the two spectra is given by

A2
T

A2
S

= � : (4.10)

Thus, there exists a simple relationship between the relative amplitude and the tensor
spectral index:

nT = �2A
2
T

A2
S

: (4.11)

This is the lowest-order consistency equation and represents an extremely distinctive sig-
nature of inationary models. It is di�cult to conceive of such a relation occurring via any
other mechanism for the generation of the spectra.

Since it is possible for the spectra to have di�erent indices, the assumption that their
ratio is �xed can be true only for a limited range of scales, but the correction enters at a
higher order in the slow-roll parameters.

This expression is often written in a slightly di�erent form in order to bring the right
hand side closer to observations. Since the spectra can be de�ned with arbitrary prefactors,
they themselves have no de�nite signi�cance. The environment in which each spectrum
may have an e�ect that allows direct comparison is in large angle microwave background
anisotropies. In this case the scalar and tensor uctuations each contribute independently
to the expected value of the microwave multipoles, Cl (de�ned and discussed in more detail
in Section VII), and in the approximation where only the Sachs-Wolfe term is included
and perfect matter{domination at last scattering assumed, this enables one to write the
lowest-order consistency equation as (Liddle and Lyth, 1992, 1993a)

CT
l

CS
l

= �6:2nT : (4.12)

This equation applies for moderate values of l corresponding to scales that are su�ciently
small for the curvature of the last scattering surface to be negligible and yet are large enough
to be well above the Hubble radius at decoupling5.

Eqs. (4.8), (4.9) and (4.10) contain all the information one requires to determine the
generic behavior of inationary models at this order. Moreover, the current status of obser-
vational data is such that they are su�cient to allow a reasonable degree of precision to be
attained in the study of large-scale structure and microwave background anisotropies. In
the forthcoming years, however, data quality will inevitably improve and a higher degree
of accuracy in the theoretical calculations will therefore be required. Indeed, high precision
microwave anisotropy experiments are likely to be the �rst type of observation demanding
just such an improvement in accuracy.

5The exact number in this relation is sometimes written in di�erent ways. It was �rst evaluated exactly
as 25(1 + 48�2=385)=9 in the scale-invariant limit by Starobinsky (1985). This is numerically equal to 6.2.

There is no regime where this strictly holds, as corrections from the `Doppler' peak and from the Universe
being not perfectly matter dominated at last scattering intervene before the asymptote is reached. Other
authors evaluate only part of the expression to approximate it as 2�, or even 6. Finally, many authors

consider the ratio of contributions to the quadrupole l = 2. In this case there is a geometrical correction
from the curvature of the last scattering surface which make the factor close to 7.
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In the next Section we shall show how these improvements may be implemented. For
the purposes of our present discussion, however, there are only two input parameters that
need to be determined before one can proceed to investigate ination-inspired models of
structure formation (Liddle and Lyth, 1993b). The key points are that (a) the density
perturbation spectrum has a power-law form and that (b) some fraction of the large angle
microwave anisotropies might be due to gravitational waves. These conditions represent two
completely independent parameters, but fortunately, they are the only two new parameters
one requires in the lowest-order approximation. This is true even though one has complete
freedom in choosing the functional form of the underlying inationary potential. A large
number of papers have now investigated the implications of these inationary parameters
for structure formation models such as Cold Dark Matter and Mixed Dark Matter models.
Some only consider the possibility of tilt (Bond, 1992; Liddle, Lyth, and Sutherland, 1992;
Cen et al., 1992, Pogosyan and Starobinsky, 1995) and some also allow for gravitational
waves (Liddle and Lyth, 1993b; Schaefer and Sha�, 1994; Liddle et al., 1996).

One can classify the generic behavior of all inationary models consistent with the
lowest-order approximation into six separate categories, as summarized in Table 1. Each
sector is characterized by the direction of the tilt away from scale invariant density pertur-
bations and by the relative amplitude of the gravitational waves. In general, spectra with
n > 1 increase the short-scale power of the density perturbation spectrum. Such spectra
were named blue spectra by Mollerach et al. (1994). Conversely, those spectra with n < 1
subtract short scale power6. It is a general feature of ination that n < 1 is easier to
produce than n > 1. The reason for this follows from the de�nition Eq. (4.8) for the scalar
spectral index. To lowest-order, a necessary and su�cient condition for the spectrum to be
blue is simply that � > 2�. Since � is positive by de�nition, this condition is not easy to
satisfy and this is particularly so during the �nal stages of ination where � must necessarily
begin to approach unity. However, speci�c ination models have been constructed for each
possibility, with the exception of a blue spectrum accompanied by a large gravitational
wave amplitude. This last possibility, while still technically possible, is particularly hard to
realize because it requires a large � overpowered by a yet larger �.

B Reconstructing the potential

In CKLL1 we developed a framework initiated by Hodges and Blumenthal (1990) that
one might call functional reconstruction. In this approach one views the observations as
determining the spectra explicitly as functions of scale. Hodges and Blumenthal (1990)
considered only scalar perturbations, and then Grishchuk and Solokhin (1991) made an
investigation, considering only the tensors, with the aim of determining the time evolution
of the Hubble parameter. In CKLL1, we provided a uni�ed treatment of both scalars and
tensors. The ultimate aim of such a procedure is to then process the functions through
the di�erential equations describing the evolution of the universe during ination. One
thereby determines the potential driving ination as a function of the scalar �eld. If such
a procedure could be carried out exactly, the quantities in the consistency equation would
also be functions of scale.

An important point worth emphasising here is that only by including the tensors can a

6We resist calling them red since the usual de�nition of red spectra is n < 0, not n < 1.
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full reconstruction be achieved. The scalar perturbations only determine the potential up
to an unknown constant. As the underlying equations are non-linear, di�erent choices of
the constant lead not just to a rescaling of the potential but to an entirely new functional
form. Thus, there are many potentials which lead to the same scalar spectrum, and hence
no unique reconstruction of the potential from the scalar spectrum. Any piece of knowledge
concerning the tensors is enough to break this degeneracy.

From a practical point of view, one �nds that the functional reconstruction procedure is
not very useful, although it does allow some theoretical insight to be gained. The reason is
that exact formulae for the amplitudes of the spectra do not exist for an arbitrary inaton
potential. Consequently, even though the classical dynamics of the scalar �eld can be
accounted for exactly, one must input the information on the spectra using results that
depend directly on the slow-roll expansion. At some level, it is inconsistent to treat the
dynamics exactly and the perturbations approximately, so formally one should truncate
both at the same order of approximation. Indeed, the next-order calculations we provide
in the following Section show that this joint truncation is indeed preferable. In general,
the next-order correction to the magnitude of the potential arising from the spectra has an
opposite sign and is slightly larger than the correction to the dynamics. In e�ect, therefore,
an exact treatment of the dynamics actually leads to a less accurate answer than that
obtained by treating the entire problem to lowest-order in slow-roll!

We therefore advocate an alternative approach that may be referred to as perturbative
reconstruction. The fundamental idea behind perturbative reconstruction follows directly
from the fact that the scalar �eld must roll su�ciently slowly down its potential if ination
is to proceed at all. This is important for the following reason. Typically, the modes
that ultimately lead to observational e�ects within our universe �rst crossed the Hubble
radius somewhere between 50 and 60 e-foldings before ination came to an end. (The
precise number of e-foldings depends on the �nal reheating temperature, but this does
not a�ect the general features of the argument). During these 10 e-foldings of inationary
expansion, the change in the value of the inaton �eld is typically small. In e�ect, therefore,
the position of the �eld in the potential would have remained essentially �xed at some
speci�c value �0. It follows, that cosmological and astrophysical observations can only
yield information regarding this small segment of the potential. Hence, it is consistent to
expand the underlying inationary potential as a Taylor series about the point �0. The
use of such a procedure to lowest-order was suggested by Turner (1993a), Copeland et al.
(1993a) and CKLL1. Turner (1993b) then included a next-order term in the potential.
The formalism was then developed fully to next-order in CKLL2, including a next-order
term in the derivatives as well as the potential and outlining the framework for the general
expansion. This framework was recast into a more observationally-based language by Liddle
and Turner (1994) who further discussed the meaning of the order-by-order expansion.

Perturbative reconstruction can be performed in a controlled way using the slow-roll
expansion order-by-order. The dynamics can be treated to arbitrary order in this expansion
by employing the formalism developed by Liddle et al. (1994). In contrast, however, the
treatment of perturbations is presently available only to next-order. In this case there seems
no obvious framework by which one can establish an order-by-order expansion, and even
just obtaining terms to one higher order is a very di�cult task.

Modulo questions of convergence, the perturbative reconstruction procedure successfully
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encodes functional reconstruction in the sense that perturbative reconstruction performed
to in�nite order is formally equivalent to functional reconstruction. Perturbative recon-
struction can also be rewritten as an expansion in the observed spectra. The advantage of
considering an expansion of this type is that it indicates exactly how the features in the
observed spectra yield information on the inationary potential. Such an explicit account
of the observational expansion has not been given before.

Before launching into speci�c calculation, however, it will be helpful to identify each
observable quantity with some order in the slow-roll expansion. This may be achieved
by considering which slow-roll parameters occur in the lowest-order term. Thus, one may
employ the lowest-order expressions for the spectra. One sees by direct di�erentiation that
the information associated with the accumulation of observables is as follows: H gives A2

T ,
� gives A2

S and nT , � gives n and dnT =d ln k, � gives dn=d ln k and d2nT=d ln k
2, and so on.

The key feature is that the tensor spectrum always remains one step above the scalar one.
Furthermore, we shall see that an additional derivative of the Hubble parameter for each
order is required to obtain a higher order expression for each observable.

We shall now proceed to derive expressions for the potential and its �rst two derivatives
correct to lowest-order in the slow-roll expansion. We consider the Taylor series

V (�) = V (�0) + V 0(�0)��+
1

2
V 00(�0)��

2 + � � � ; (4.13)

about the point �0. At this order, the Hamilton-Jacobi equation (2.25) reduces to V (�) =
3m2

PlH
2(�)=8�, so the derivatives in this expansion may be expressed directly in terms of

the slow-roll parameters from Eqs. (2.27) and (2.28). It is only consistent to expand the
potential to quadratic order, because the third derivative will contain terms that are of
the same order as terms that were neglected in the original expressions for the amplitudes.
In other words, the lowest-order expressions do not permit any higher derivatives to be
obtained.

It follows by direct substitution, therefore, that Eq. (4.13) may be written as

V (�) =
3m2

PlH
2
0

8�

"
1� (16��0)

1=2 ��

mPl
+ 4�(�0 + �0)

(��)2

m2
Pl

+O
 
(��)3

m3
Pl

!#
; (4.14)

where a subscript 0 implies that quantities are to be evaluated at � = �0. Hence, H0

represents the expansion rate when the scale corresponding to this value of the scalar �eld
�rst crossed the Hubble radius during ination.

We write the coe�cients that arise in this expansion in terms of the spectra by employing
the expressions Eqs. (4.3) and (4.4) for the amplitudes, the de�nition Eq. (4.8) for the scalar
spectral index and the de�nitions of the slow-roll parameters. We �nd that

V (�0) =
75m4

Pl

32
A2
T (k0) ; (4.15)

V 0(�0) = �75
p
�

8
m3

Pl

A3
T (k0)

AS(k0)
; (4.16)

V 00(�0) =
25�

4
m2

PlA
2
T (k0)

"
9
A2
T (k0)

A2
S(k0)

� 3

2
(1� n0)

#
; (4.17)
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where k0 is the scale at which the amplitude and spectral indices are determined and n0
is the scalar spectral index at k0. As already implied by Eq. (4.8), if n exceeds one the
potential must be convex (V 00 > 0) at the point being probed. However, n being less than
one says nothing de�nite about convexity or concavity.

Perturbative reconstruction can be possible even if it ultimately transpires that the ob-
servations necessary to test the consistency equation non-trivially cannot acquire su�cient
accuracy. Similar work on reconstruction to this level of approximation has been done by
Adams and Freese (1995), Mielke and Schunck (1995) and Mangano, Miele, and Stornaiolo
(1995).

However, it is clear that a determination of the gravitational wave amplitude on at least
one scale is essential for the reconstruction program to work. Presently, such a quantity has
not been directly determined, but we may nevertheless draw some interesting conclusions
from the above calculation. In particular, there are a number of limiting cases to Eq. (4.14)
that are of interest. Firstly, when � = �, Eq. (4.14) is the expansion for the exponential
potential V / exp(�p16�� �=mPl). (Without loss of generality we may perform a linear
translation on the value of the scalar �eld such that �0 = 0). Secondly, the potential has
the form

V (�) = �
h
1 + 2�(n� 1)�2=m2

Pl

i
; (4.18)

in the limiting case where � � 1. This class of potentials produces a negligible amount of
gravitational waves, but a tilted scalar perturbation spectrum. The tilt arises because the
curvature of the potential is signi�cant. The direction of the tilt, as determined by the sign
of (n� 1), depends on whether the e�ective mass of the inaton �eld is real or imaginary.

The dynamics of ination driven by a potential of the form Eq. (4.18) for n > 1 has an
interesting property. The kinetic energy of the inaton �eld is determined from H 0(�) via
the second expression in Eq. (2.26). As the �eld rolls down the potential towards � = 0,
H 0 gradually decreases whilst H tends towards a positive constant. Hence, the �eld slows
down as it approaches the minimum, but it loses kinetic energy in such a way that it can
never reach the minimum in a �nite time. Hence, the de Sitter universe is a stable attractor
for this model and consequently the inationary expansion can never end.

There are two ways of circumventing this di�culty. Firstly, one can argue that the
potential only resembles Eq. (4.18) over the small region corresponding to cosmological
scales. This is rather unsatisfactory, however, since it requires ad-hoc �ne-tuning of the
potential and therefore goes against the overall spirit of ination. A much more plausible
suggestion is that the �rst term of Eq. (4.18) arises because a second scalar �eld is being held
captive in a false vacuum state. This is the case, for example, in Linde's Hybrid Ination
scenario (Linde, 1991, 1994; Copeland et al., 1994b), and an associated instability can end
ination.

We end this section by quoting formulae appropriate to the situation where one is given
the potential and must calculate the predicted spectra; in general, one cannot analytically
�nd the H(�) corresponding to a given V (�). In order to obtain the spectra, one uses
the Friedmann equation Eq. (2.25) and its derivatives in combination with the slow-roll
approximation. To lowest-order, the spectral indices were �rst given by Liddle and Lyth
(1992), and are

n� 1 = �6�V + 2�V ; (4.19)
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nT = �2�V ; (4.20)

where

�V =
m2

Pl

16�

�
V 0

V

�2
; �V =

m2
Pl

8�

V 00

V
; (4.21)

are slow-roll parameters de�ned from the potential and di�er slightly from the de�nitions
made in terms of the Hubble parameter used in the rest of this paper (see Liddle et al.
(1994) for more details). It is also possible to write down next-order expressions for the
spectral indices in terms of the potential (Stewart and Lyth, 1993; Kolb and Vadas, 1994).
Expressions such as these written in terms of the potential only make sense because of the
existence of the inationary attractor.

V Next-Order Reconstruction

The level of accuracy discussed in the previous Section, while perfectly adequate at present,
is unlikely to be su�cient once high resolution microwave background anisotropy exper-
iments are carried out. The theoretical benchmark for calculating the radiation power
spectrum from a matter power spectrum has been set at one percent in order to cope with
such observations (Hu et al., 1995). If ination is to take advantage of this level of accuracy,
it is vital that the initial power spectrum can be considered to at least a similar level of
accuracy. At the very least, this will require the next-order expressions for the spectra,
which represent the highest level of accuracy presently achieved.

For many potentials, the next-order corrections may be small, perhaps smaller than
the likely observational errors on the lowest-order terms. We shall see this in the simulated
example later in this paper. In such a case the next-order calculation is still useful, because it
serves as an estimate of the theoretical error bar on the calculation, which can be contrasted
with the observational error.

We devote this Section to describing the next-order results in detail.

A The consistency equations

Let's �rst consider the next-order version of the lowest-order consistency equation Eq. (4.11).
The best available calculations of the perturbation spectra are those by Stewart and Lyth
(1993) containing the next-order, which we reviewed extensively in Section III. To this
order, the amplitudes for the scalar and tensor uctuations are given by

AS(k) =
4

5m2
Pl

[1� (2C + 1)�+ C�]
H2

jH 0j

�����
k=aH

; (5.1)

AT (k) =
2

5
p
�
[1� (C + 1)�]

H

mPl

����
k=aH

; (5.2)

respectively, where we choose the same normalizations for AS and AT as in Section IV. We
recall that C ' �0:73 is a constant. Once again, the right-hand sides of these expressions
are to be evaluated when the scale in question crosses the Hubble radius during ination.

Throughout the remainder of this Section we shall be quoting results that feature a
leading term and a correction term, the next-order term, which is one order higher in the
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slow-roll parameters. We shall utilize the symbol \'" to indicate this level of accuracy.
The correction terms shall be placed in square brackets, so the lowest-order equations can
always be obtained by setting the square brackets equal to unity, except in Eqs. (5.3) and
(5.20) where it needs to be set to zero.

To next-order, the scalar and tensor spectral indices may be expressed in terms of
the �rst three slow-roll parameters by di�erentiating Eqs. (5.1) and (5.2) with respect to
wavenumber k and employing Eq. (2.35). Some straightforward algebra yields (Stewart and
Lyth, 1993)

1� n ' 4�� 2� +
h
8(C + 1)�2 � (6 + 10C)�� + 2C�2

i
; (5.3)

nT ' �2� [1 + (3 + 2C)�� 2(1 + C)�] : (5.4)

A very useful relationship may be derived by considering the ratio of the tensor and
scalar amplitudes and replacing the derivative of the Hubble expansion rate with �. We �nd
that

� ' A2
T

A2
S

[1� 2C(�� �)] : (5.5)

This relationship is the next-order generalization of Eq. (4.10). It plays a central role in
deriving the next-order expressions for the potential and its �rst two derivatives in terms
of observables. Moreover, substitution of this expression into Eq. (5.4) implies that

nT ' �2A
2
T

A2
S

[1 + 3�� 2�] : (5.6)

Now, since all the quantities in the square brackets of this expression are accompanied
by a lowest-order prefactor, they may be converted into observables by applying the lowest-
order expressions Eqs. (4.8) and (4.10). We conclude, therefore, that

nT ' �2A
2
T

A2
S

"
1� A2

T

A2
S

+ (1� n)

#
: (5.7)

This is the next-order version of the lowest-order consistency equation nT = �2A2
T =A

2
S ,

given �rst in CKLL2 and translated into more observational language by Liddle and Turner
(1994). It is interesting to remark that the corrections entering at next-order depend only on
the relative amplitudes of the spectra and on n. They do not depend on nT or on any of the
derivatives of the indices, because they can be consistently removed using the lowest-order
version of the same equation. This has an important consequence that has only been implicit
in the literature thus far. We anticipate that n will be considerably easier to measure than
nT . It is reasonable to suppose, therefore, that if one has enough observational information
to test the lowest-order consistency equation, one will also have su�cient data to test the
next-order version as well. In other words, the situation where only the quantities in the
lowest-order consistency equation are known is unlikely to arise. Consequently, one should
employ the next-order consistency equation when testing the inationary scenario, rather
than the more familiar version given by Eqs. (4.11) or (4.12).

Another new feature of extending the observables to allow reconstruction at this order
is that one has an entirely new consistency equation, being the lowest-order version of the

34



derivative of the original consistency equation. One calculates dnT =d ln k by di�erentiating
Eq. (5.4) with respect to scale k and employing Eqs. (2.27) and (2.35). One �nds that

dnT

d ln k
' �4�(�� �) : (5.8)

Conversion of this expression into observables follows immediately by substituting in the
lowest-order results Eqs. (4.8) and (4.10), giving

dnT

d ln k
' 2

A2
T

A2
S

 
2
A2
T

A2
S

+ (n� 1)

!
: (5.9)

This equation was derived by Kosowsky and Turner (1995), though they did not explicitly
recognize it as a new consistency equation. Unfortunately, the observables appearing in the
above expression are far from promising as regards using it.

B Reconstruction of the potential to next-order

Now that we have discussed the formalism necessary for calculating the dynamics and
perturbation spectra up to next-order in the slow-roll expansion, we shall proceed to consider
the reconstruction of the inationary potential at this improved level of approximation.

We begin by deriving expressions for the potential and its derivatives directly from the
�eld equation Eq. (2.25) and the de�nitions Eqs. (2.27) { (2.29) for the slow-roll parameters.
Successive di�erentiation of Eq. (2.25) with respect to the scalar �eld yields the exact
relations

V =
m2

PlH
2

8�
(3� �) ; (5.10)

V 0 = �mPlH
2

p
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�1=2(3� �) ; (5.11)

V 00 = H2
�
3�+ 3� � (�2 + �2)

�
; (5.12)

Our immediate aim is to consider these expressions at a single point �0 and rewrite them
in terms of observable quantities. The amplitude of the potential is derived by substituting
Eqs. (5.2) and (5.5) into Eq. (5.10):

V (�0) ' 75m4
Pl
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' 75m4
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S(k0)

#
: (5.14)

At this stage, it is interesting to consider how this result would be altered if one treated
the scalar �eld dynamics in full generality rather than truncating at next-order. It follows
from the general expression Eq. (5.10) for the potential that the numerical factor on the
next-order term in the last expression of Eq. (5.13) would become �1=3. What this means
is that the next-order correction to the potential that is due to the spectra dominates the
dynamical corrections. This is true for all inationary models. Since the sign of the spectral
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correction is opposite to that of the dynamical ones, the overall sign of the correction is
reversed.

Since the potential's �rst derivative contains �, we need information regarding the value
of the scalar spectral index at k0 if we are to obtain V 0(�). We replace the H2 term in
Eq. (5.11) by substituting the tensor amplitude Eq. (5.2) and collecting together the terms
containing f�; �g to linear order. These may then be written in terms of the spectra via the
lowest-order expressions Eqs. (4.8) and (4.11). The result is
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The calculation for V 00(�0) is much more involved. A new observable is needed to
determine �; the easiest example being the rate of change of the scalar spectral index. This
will be substantially harder to measure, though, and it is fortunate that it only enters at
next-order. (However, it would enter at leading order in V 000(�0), as mentioned in CKLL2
and derived fully in Liddle and Turner (1994)). We can obtain the next-order correction
to V 00(�0) directly in terms of the slow-roll parameters by employing Eqs. (5.2) and (5.12).
We �nd that
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To proceed, we must convert the prefactor (� + �) into observables, accurate to next-
order. To accomplish this we must employ the next-order result Eq. (5.3) for the scalar
spectral index. A straightforward rearrangement of this latter equation yields
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where the second expression follows after substitution of Eq. (5.5). Substituting this into
Eq. (5.16) yields
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where the last term is entirely next-order. Note that there are two lowest-order terms. An
interesting case is � = ��, corresponding to H / �1=2, for which the lowest-order term
vanishes identically and the �nal term of Eq. (5.16) is the only one to contribute. The
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second derivative of the potential is the lowest derivative at which it is possible for the
expected lowest-order term to vanish.

The �nal step is to convert the next-order terms into the observables. As they are
already next-order, one only needs the lowest-order term in their expansion to complete
the conversion. From the lowest-order expression for the scalar spectral index, one �nds to
lowest-order that

�2

�
' � 1
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����
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+ 5� � 4� : (5.19)

Note that the derivative of the spectral index is of order �2. Finally, substitution of
Eqs. (4.8), (4.11) and (5.19) into Eq. (5.18) yields
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where the �rst two terms in the curly brackets represent the lowest-order contribution.
Before we conclude this section, it is worth remarking on a point that has perhaps been

implicit in the existing literature but has not been stated explicitly before. A determina-
tion of each successive derivative of the potential requires an extra piece of observational
information. In particular, for the case of lowest-order perturbative reconstruction, we con-
clude that the �rst term in the Taylor expansion requires only AT , but the second requires
both AS and AT . The third term, on the other hand, needs both of these together with
n0. The ability to make the observations therefore dictates how many derivatives we can
determine. On the other hand, a comparison of the lowest-order and next-order expressions
for the derivatives implies the following: the new piece of information necessary for the
derivation of the lowest-order term in V 0 is also su�cient to yield the next-order term in
V . Likewise, the next observation will give the lowest-order term in V 00 and this is enough
to give the next-order term in V 0. Furthermore, it is also su�cient, in principle, to give
the third-order term in V . We stress in principle because the theoretical machinery has
not been developed to allow the calculation of a third-order term in the potential or its
derivatives to be performed. Hence, while observational limitations constrain how high a
derivative we can reach, it may be theoretical rather than observational limitations which
prevent higher accuracy in the lower derivatives. This will be the case even though the
necessary observational information may become available.

Table 2 lists the ination parameters required for reconstruction of a given derivative
of the potential. Reconstruction requires the ination parameters in terms of observables.
Relations between inationary parameters and observables are given in Tables 3 and 4. A
combination of information from Table 2 and Table 4 results in Table 5, the observables
needed to reconstruct a given derivative of the potential to a certain order. Although we
know the information required for the next-to-next order given in Table 5, we don't know
the coe�cients of the expansion.
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VI The Perturbative Reconstruction Framework

Although the next-order results of the previous Section represents the theoretical state-of-
the-art, it is possible to see how the general pattern goes. We discuss this in this Section
and also introduce an expansion of the observations corresponding to perturbative recon-
struction.

A A variety of expansions

During reconstruction, there are three types of expansion being carried out. There is an
expansion in terms of observables, an expansion in terms of slow-roll parameters and an
expansion of the potential itself.

Since the underlying theme behind the reconstruction program is that one is driven by
observations, let us �rst consider what information might be available. The reconstruction
program assumes some measurements of AS(k) and AT (k) are available over some range of
scales. In practice, the likely range of observations for the scalars will probably be no greater
than �5 < ln(k=k0) < 5, with a much shorter range for the tensors. In accordance with the
perturbative reconstruction strategy, the spectra should be expanded about some scale k0
which corresponds to the scale at horizon crossing when � = �0. The appropriate expansion
is in terms of ln(k=k0), and of course it makes best sense to carry out the expansion about
a wavenumber close to the middle of the available data.

In general, the expansions can be written as

lnA2
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+
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where the coe�cients continue as far as the accuracy of observations permit. There is no
obligation for the two series to be the same length. Indeed, we anticipate that information
associated with the scalars will be considerably easier to obtain in practice.

The range of lnk over which data are available leads to the range of � over which the re-
construction converges well. Notice that since we believe ln(k=k0) can be somewhat greater
than unity, convergence of this type of series will only occur if the successive coe�cients
become smaller. Fortunately, we have already seen in Section IV that the lowest-order in-
ationary predictions attach an extra slow-roll parameter to each higher derivative of the
spectra taken, so convergence can still occur as long as the slow-roll parameters are smaller
than 1=max j ln(k=k0)j. This forms a good guide as to how wide a range of scales can be
addressed via perturbative reconstruction. The observation that the spectral index (at least
of the scalars) is not too far from unity suggests that the slow-roll parameters are small.
Hence, the observational expansion might continue to converge well outside the range of
lnk actually observed. The equivalent statement regarding the potential would be to say
that if it is reconstructed very smoothly for the range �� corresponding to observations,
one should feel fairly con�dent in continuing the extrapolation of the potential beyond the
region where direct observations were available (though in a practical sense this does not
correspond to any extra information).
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The observational expansion discussed above is closely related to the slow-roll expansion.
In particular, we may consider the expansion of the spectra at a given k in terms of slow-roll
parameters, as discussed in Section III. A qualitative comparison of the two expansions then
yields a general pattern. Each term from the scalars allows the determination of one extra
slow-roll parameter. With regard to the tensors, a single piece of information (presumably
the amplitude) is necessary before one can proceed at all, as we have discussed previously.
Beyond that, however, extra terms for the tensors do not provide new slow-roll parameters.
Instead, they lead to degenerate information and hence consistency relationships. If one has
the �rst two terms for the tensors and the �rst scalar term, one can test the single familiar
consistency equation nT = �2A2

T =A
2
S . Further tensor terms result in a whole hierarchy of

consistency equations, as we shall discuss further in the next Subsection.
By including terms consisting of products of more and more slow-roll parameters, one

builds up a more accurate answer. However, there are two separate factors that prevent
arbitrary accuracy from being obtained. The �rst is observational limitations. For a practi-
cal observational data set with error bars, the observational expansion discussed above can
only be carried out to some term, beyond which the coe�cients are determined as being
consistent with zero within the errors. (If the error bars are still small when this happens, it
may still correspond to useful information). This reects directly on the number of slow-roll
parameters �, �, �, etc, that one can measure. In general, however, there are an in�nite
number of slow-roll parameters, and formally they are all of the same order (meaning that
for a `generic' potential, one expects them all to be of similar size). This appears to be rather
problematic, since a �nite number of terms in the observational expansion cannot constrain
an in�nite number of slow-roll parameters. Fortunately, however, only a �nite (and usually
small) number of such terms ever appear when a speci�c expression is considered.

The second restriction is that current technical knowledge concerning the generation of
the spectra, as reviewed in Section III, only allows the calculation of a lowest-order term
plus a correction involving single slow-roll parameters. In general, one anticipates further
corrections including products of two or more slow-roll parameters, but that has not been
achieved. It follows, therefore, that the number of derivatives in the potential that may be
calculated is determined by observational restrictions, whilst the accuracy of each derivative
is also constrained by theoretical considerations.

It should be emphasized that once an expression written as an expansion in slow-roll
parameters has been found, it can be di�erentiated an arbitrary number of times. It is
interesting that the derivatives are accurate to the same number of orders in the slow-
roll parameters. This follows because di�erentiation respects the order-by-order expansion.
However, di�erentiation introduces higher and higher slow-roll parameters from the in�nite
hierarchy. An important point here is that the `lowest-order' can be a product of any
number of slow-roll parameters; the phrase is not synonymous with setting the slow-roll
parameters all to zero.

Having started with the observations, we now come round to the crux of the reconstruc-
tion process: the inaton potential. In perturbative reconstruction, one aims to calculate
the potential and as many of its derivatives as possible at a single point to some level of ac-
curacy in slow-roll parameters. The ultimate goal is to use this information to reconstruct
some portion of the potential about this point, by carrying out some expansion of V (�)
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about the point �0. The simplest strategy is to use a Taylor series

V (�) = V (�0) + V 0(�0)��+
1

2
V 00(�0)��

2 + � � � ; (6.3)

and we shall only consider that case here. The literature does include more ambitious
strategies such as Pad�e approximants and these may become useful when speci�c data are
available (Liddle and Turner, 1994). The success of this expansion is governed by how far
away from �0 one hopes to go, which ultimately arises from the range of observations one
has available, as well as on how accurately the individual derivatives are determined.

This expression shows us that perturbative reconstruction of the potential actually in-
volves two expansions. We have already seen that the potential is obtained up to some
accuracy in the slow-roll expansion. However, for reconstruction to be successful, it is also
imperative to consider how accurate the expansion in �� might be. Determining the coef-
�cients of only the �rst one or two terms may be completely useless if �� turns out to be
large.

The key to investigating this is to rewrite �� in terms of � lnk, the range of scales
over which observations can realistically be expected to cover7. Broadly speaking this
corresponds to the interval from 1 Mpc to about 104 Mpc, so assuming a center point in the
middle of this region implies a range for � lnk between �5. This may be biased through
tensor data only being available on large scales, though it will also be of considerably lower
quality than the scalar data. The relationship that allows one to achieve the comparison
between �� and � lnk is the exact formula Eq. (2.35) presented earlier

d�

d ln k
=

m2
Pl

4�

H 0

H

1

�� 1
=

mPlp
4�

p
�

�� 1
; (6.4)

together with its derivatives. One can then expand �� in terms of � lnk, expanding each
coe�cient up to some order in the slow-roll expansion. Such an expansion begins

�� = �mPlp
4�

p
� [1 + �+ � � �]� lnk (6.5)

+
mPlp
16�

p
� [�� � + � � �] (� lnk)2 + � � � ;

where, for illustrative purposes, the �rst coe�cient has been given to next-order in slow-roll
and the second one to lowest-order. The signs are chosen in accordance with our convention
that V 0 < 0.

For clarity we shall employ � to represent a generic slow-roll parameter. One can
then schematically represent the double expansion (one in �� and one in the slow-roll
parameters), as

V (�)

A2
T (k0)

� [1 + � + � � �] ;

+ ��lnk [1 + � + � � �] f1 + � + ��lnk + � � �g ;
+ �2(� lnk)2 [1 + � + � � �] f1 + � + ��lnk + � � �g ; (6.6)

7Turner (1993b) and Liddle and Turner (1994) carried out a similar analysis using �N , the number
of e-foldings. This is perfectly valid but somewhat harder to interpret in terms of observable scales since

it is only formally equivalent in a lowest-order approximation. In this work, however, we desire a simple
interpretation of the next-order results.
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where numerical constants have not been displayed. The square brackets represent the
expansion of the potential and its derivatives at �0, while the curly brackets represent the
��, which itself is written as an expansion in � lnk with coe�cients expanded in slow-roll.

For the slow-roll expansion to make sense, we need � � 1. One can see from the
schematic layout of Eq. (6.6) that convergence of the expansion will fail unless ��lnk �
1, as successively higher-order terms will otherwise become more and more important.
However, we have agreed that � lnk itself need not be small. In regions where it is, it is
clear that the best results are obtained by calculating the low derivatives of the potential
as accurately as possible. In regions where � lnk is not small, however, it is more fruitful
to calculate higher derivatives.

B The consistency equation hierarchy

In the previous Subsection, we stated that there exists an in�nite hierarchy of consistency
equations. It is not di�cult to see why such a hierarchy should exist. Even though exact
expressions for the spectra as a function of scale are not presently available, one can imagine
having such expressions, at least in principle. In this case, one could then write down a
consistency equation in the full functional reconstruction framework that applied over all
available scales. This equation could then be represented in the perturbative reconstruc-
tion framework by performing a Taylor (or similar) expansion on both sides of it. The
perturbative consistency equations could then be derived by equating the coe�cients of the
expansions. The key idea here is that the full functional consistency equation and all its
derivatives must be satis�ed at the point about which perturbative reconstruction is being
attempted. The equality of each derivative at this point, however, represents a separate
piece of information.

In Section IV we presented the consistency equation Eq. (4.11) for lowest-order per-
turbative reconstruction. The connection between the tensor{scalar ratio and the tensor
spectral index was �rst presented by Liddle and Lyth (1992) and has been much discussed
in the literature. This consistency equation is simply the (unknown) full functional consis-
tency equation applied at a single point, and moreover, it is the version of that equation
truncated to lowest-order in slow-roll. Indeed, it does not require a determination of n and
it corresponds to the lowest, non-trivial truncation of the expansion of the observed spectra.

The next order in slow-roll introduces n and dnT =d ln k. This not only supplies enough
information to impose a next-order version of the original consistency equation, but is also
enough to impose a lowest-order version of the derivative of the consistency equation. The
next-order versions of the original consistency equation were supplied by CKLL2 and Liddle
and Turner (1994) and we discussed these in Section V. We also discussed the lowest-order
version of the derivative of the consistency equation in that Section. This equation was �rst
given by Kosowsky and Turner (1995).

This pattern continues at all orders in the expansion. One can ask why this has not
been emphasised before. One reason is that until now a clear understanding has not been
established regarding the type of observational information that appears at each order in
the expansion. At the same stage that one introduces n in the slow-roll expansion, one
should also introduce the rate of change of the tensor spectral index. The latter does not
provide any new information regarding the reconstruction, in the same way that nT did
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not provide new information at lowest-order in slow-roll. However, it is subject to the new
consistency equation. Researchers have not paid attention to the new consistency equation
because it requires dnT =d ln k and it seems very unlikely that this could ever be measured.

This concludes our discussion of the theoretical framework for perturbative reconstruc-
tion. In the following Section, therefore, we shall discuss whether the observations are likely
to reach an adequate level of sophistication in the foreseeable future and then consider a
worked example that illustrates how the reconstruction programme might be applied in
practice.

VII Worked Examples of Reconstruction

A Prospects for reconstruction

In this Subsection, we shall consider the long-term prospects for reconstructing the inaton
potential. It is clear that one must determine the amplitudes of the primordial power spectra
of scalar and tensor uctuations on at least one scale, together with the slope of the scalar
spectrum at that scale. Such information would provide enough information to reconstruct
the potential and its �rst two derivatives to lowest{order. However, a measurement of nT is
also required if one is to test the inationary hypothesis via the consistency equation. If such
information becomes available at all, it will probably be after AS , AT and n have themselves
been determined, so reconstructing to lowest-order should prove easier to accomplish than
testing the scenario via the consistency equation.

It is convenient to separate the full cosmological parameter space into two sectors.
The �rst contains the inationary parameters essential for reconstructing the potential and
testing the consistency equations. They are

(AS ; r; n; nT ; � � �) ; (7.1)

where all are evaluated at k0, and the list extends to as many derivatives of the spectra
as one wishes to consider. The tensor-scalar ratio r � 12:4A2

T =A
2
S is de�ned so that r = 1

corresponds to an equal contribution to large angle microwave anisotropies from the scalar
and tensor uctuations, as follows from Eqs. (4.11) and (4.12)).

The second set consists of the other cosmological parameters:

(
0;
�;
CDM;
HDM;
Bh
2; h; zR; : : :) ; (7.2)

where the 
 represent the densities in matter of various sorts, respectively the total matter
density, cosmological constant, cold dark matter, hot dark matter and baryonic matter.
Here zR represents the redshift of recombination; it may be that this single parameter is
adequate or the full ionization history may have to be taken into account. In the stan-
dard cold dark matter (CDM) model these parameters take the values (AS(k0); 0; 1; 0)
and (1; 0; 0:95; 0; 0:0125; 0:5) respectively (further parameters concerning derivatives of the
spectral indices in the �rst set being zero); that is, the scalar amplitude is the only free
parameter available to �t to observations. The standard ionization history of the universe
is also assumed.

Experiments measuring microwave background anisotropies o�er the most promising
route towards acquiring such information to within the desired level of accuracy. Although
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redshift surveys provide valuable insight into the nature of the scalar spectrum at the present
epoch, uncertainties in the mass{to{light ratio of galaxy distributions imply that it is very
di�cult to determine the primordial spectrum from these observations alone. There are
further complications associated with uncertainties in the type of non-baryonic dark matter
in the universe. These can lead to signi�cant modi�cations in the form of the transfer
function. One crucial advantage that microwave background experiments have, however,
is that the level of anisotropy above 10 arcmin is almost independent of whether the dark
matter is hot or cold (Seljak and Bertschinger, 1994; Stompor, 1994; Ma and Bertschinger,
1995; Dodelson, Gates, and Stebbins, 1996). Moreover, as we shall see in Section VIII, a
direct detection of the stochastic background of gravitational waves by laser interferometers
seems highly improbable. Thus, the microwave background anisotropies appear to be the
only practical route at present towards determining the gravitational wave amplitude.

It is conventional to expand the temperature distribution on the sky in terms of spherical
harmonics

�T

T0
=

1X
l=2

lX
m=�l

alm(r)Ylm(x) ; (7.3)

where the monopole and dipole terms have been subtracted out and T0 = 2:726K is the
present mean background temperature. The l-th multipole corresponds loosely to an angular
scale of �=l, and a comoving length scale of 100h�1 Mpc at the last scattering surface
subtends an angle of about one degree (for 
0 = 1).

Ination predicts that the alm are gaussian random variables, with a rotational invariant
expectation value for their variance Cl � hjalmj2i. The radiation power spectrum is de�ned
to be l(l+1)Cl; this is exactly constant in the case of a scale{invariant density perturbation
spectrum (n = 1; r = 0) when the Sachs{Wolfe e�ect is the sole source of anisotropy
(Sachs and Wolfe, 1967; Bond and Efstathiou, 1987). In general, both tensor and scalar
perturbations contribute to the observed radiation power spectrum, and for ination these
contributions are independent, so Cl = CS

l + CT
l .

Accurate calculations of the Cl from both scalar and tensor modes require numerical
solutions using a Boltzmann code (Bond and Efstathiou, 1987), and this can now be done
to an extremely high accuracy, of around one percent or so (Hu et al., 1995). A recent inno-
vation is a new algorithm based on an integral solution of the Boltzmann equation (Seljak
and Zaldarriaga, 1996a), which obtains this level of accuracy at much less computational
expense. In principle high quality observations can approach this accuracy though the ques-
tion of foreground remains a delicate one (Hu et al., 1995; Tegmark and Efstathiou, 1996)
and so the true observational accuracy will be less. These types of numerical study seem
essential for high accuracy work, although they are complemented by analytical approaches,
which can be made both for scalars (Hu and Sugiyama, 1995) and for tensors. The latter
case is the easier for two reasons; �rstly, only gravitational e�ects need to be considered and
secondly, gravitational waves redshift away once they are inside the Hubble radius, so their
main inuence is only on the lower multipoles, up to l ' 100. Analytic studies, of increasing
sophistication, have been made by Abbott and Wise (1984a, 1984b), Starobinsky (1985),
Turner, White, and Lidsey (1993), Atrio-Barandela and Silk (1994), Allen and Koranda
(1994), Koranda and Allen (1994) and Wang (1996). These results show good agreement
with the numerical calculations of Crittenden et al. (1993a) and Dodelson, Knox, and Kolb
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(1994), who evolve the photon distribution function by applying �rst-order perturbation
theory to the general relativistic Boltzmann equation for radiative transfer.

With this calculational power in place, there are two main obstacles to determining the
primordial spectra. These are known as `cosmic variance' and `cosmic confusion', respec-
tively.

Cosmic Variance: A given inationary model predicts the quantities Cl = hjalmj2i, but
the observed multipoles measured from a single point in space are a2l =

P+l
m=�l jalmj2=4�.

These only represent a single realization of the Cl. It is well known that a �nite sampling
of events generated from a random process leads to an intrinsic uncertainty in the variance
even if the experiment is perfectly accurate; this is sometimes called sample variance. In
the limit of full sky coverage this uncertainty is known as cosmic variance.

More precisely, the a2l are a sum of 2l+1 Gaussian random variables and therefore have
a probability distribution that is a �2 distribution with 2l + 1 degrees of freedom. Thus,
for each multipole there are 2l + 1 samples, so the uncertainty in the Cl is given by

�Cl

Cl
=

s
2

2l + 1
: (7.4)

This implies that cosmic variance is proportional to l�1=2 and is therefore less signi�cant
on smaller angular scales. However, for any given experiment, the beam width limits how
high an l can be obtained before experimental noise intervenes, and anyway in standard
cosmological models the predicted signal cuts o� rapidly beyond l � 1000 due to the �nite
thickness of the last scattering surface. Thus, the information on the tensor components is
limited because there is very little signal in near{scale invariant models for l � 200 where
the e�ects of cosmic variance are less signi�cant.

Cosmic Confusion: The anisotropy below l � 60 is essentially determined by the ina-
tionary parameters in Eq. (7.1), and by 
0 and 
�, since it is dominated by the purely
gravitational terms rather than the details of the matter content of the universe. On the
other hand, the anisotropies are highly model dependent for l > 60 due to the complexity of
the operating physical processes. In particular, the precise level of anisotropy in this range
depends sensitively on the values of the cosmological parameters listed in Eq. (7.2). Bond et
al. (1994) have suggested that di�erent sets of values for these parameters sometimes lead
to power spectra which are extremely similar (for a review see Steinhardt, 1994). This leads
to degeneracies in determined parameters, which Bond et al. refer to as `cosmic confusion'.
Cosmic confusion is problematic for the reconstruction program and the degeneracy must
be lifted before it can proceed. Fortunately, things have moved on since the Bond et al.
discussion, and it is now acknowledged that observations can be carried out at such a high
accuracy that the degeneracy is lifted (Hu et al., 1995, Jungman et al., 1996). Tegmark
and Efstathiou (1996) have found that the microwave background anisotropies can be de-
termined to very high precision even in the presence of multi-component foreground noise
by the COBRAS/SAMBA satellite.

It should also be noted that other methods are available for determining cosmological
parameters. For example, the primordial light element abundances imply that 0:009 �

Bh

2 � 0:022 and these limits may become stronger as observations of deuterium in quasar
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absorption lines improve (Olive et al., 1990; Copi, Schramm, and Turner, 1995). Fur-
thermore, an accurate measurement of h, certainly to within 10% , seems achievable with
the Hubble Space Telescope (Freedman et al., 1994), whilst polarization of the microwave
background may provide insight into the ionization history of the universe (Crittenden,
Davis, and Steinhardt, 1993b; Frewin, Polnarev, and Coles, 1994; Crittenden, Coulson, and
Turok, 1994; Kosowsky, 1996). There has also recently been improved understanding of the
possibility of using polarization to probe gravitational waves (Kamionkowski, Kosowsky,
and Stebbins, 1996; Seljak and Zaldarriaga, 1996b; Zaldarriaga and Seljak, 1996). Because
gravitational waves typically contribute more (relative to density perturbations) to the po-
larization than to the total anisotropy, and indeed because one can identify a combination
of the polarization parameters which cannot be induced by density perturbations at all, it
may ultimately be possible to use polarization to do better than the cosmic-variance limited
studies of the temperature alone which we discuss below.

In view of this, it is important to consider to what degree the next generation of satellites
will be able to determine the inationary parameters in Eq. (7.1). Knox and Turner (1994)
have considered what might be deduced from two experiments A and B whose window
functions are centered around lA � 55 and lB � 200, respectively. Experiment B only
measures anisotropy due to the scalar uctuations, whereas A will be sensitive to both
scalar and tensor uctuations. They considered `standard' cosmological parameters h = 0:5,

B � 0:05, 
� = 0 and a scale{invariant spectrum. They concluded that if the tensor-
scalar ratio r � 0:14, one should be able to rule out r = 0 with 95% con�dence 95% of
the time. Thus, the gravitational wave amplitude should be quantitatively measurable for
r � 0:14. If n is reduced, the limit is improved slightly to r � 0:1. Knox and Turner (1994)
further conclude that full{sky measurements on angular scales 0:5o and 3o should acquire
the sensitivity required for making such a detection.

For reconstruction to proceed at lowest{order, however, one also requires CS
l for some

l and also the spectral index n. Knox (1995) has simulated a set of microwave background
experiments within the context of chaotic ination driven by a �4 potential. This model
predicts n = 0:94, nT = �0:04 and r = 0:28. He considers a third measurement made on
a smaller angular scale than those of A and B. It is this measurement that determines CS

l

and this may be combined with the measurement at the intermediate scale lB to determine
the slope n. Finally, r is inferred by identifying the `excess power' arising in measurement A
with the gravitational waves. He concludes that the quantity CS

2 130
1�n could be measured

to an accuracy of �0:3% and the error in the slope of the scalar spectrum could be as small
as �0:02. If n � 1, the error on r is �0:1 and improves slightly for smaller n. A full{sky
experiment designed with current technology and with a 200 beam should be able to achieve
such precision.

However, these results are derived on the assumption that the cosmological parameters
have been accurately determined by other means. Indeed, to achieve the above precision
on r and n, one requires the errors in 
Bh

2 to be no more than 10 % and 6%, respectively
(Knox, 1995). Furthermore, the Hubble parameter will have to be determined to within 6%
or 14% respectively if 
� = 0:8 and the uncertainty in 
� must be below 7%.

More recently, Jungman et al. (1996) have carried out an analysis where all ination-
ary and cosmological parameters are allowed to vary. They con�rm the expectation that
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the estimates provided by Knox (1995) are very optimistic. If all the other cosmological
parameters are left completely free, it is impossible to get any useful information on the
gravitational waves at all | the required value of r is somewhat larger than mentioned
above, and nT would have to be extremely large. However, that represents a somewhat
pessimistic assessment, because certainly many of the cosmological parameters will be con-
strained by other types of observations, and more importantly one may also feel content to
live within a subset of cosmological parameter space (for example, critical density universes
with only cold dark matter).

The accuracy to which the above parameters can be observationally determined will
decide whether the information is good enough to push any of the expressions beyond
lowest-order. Another possibility is that a more sophisticated observable may become avail-
able; Kosowsky and Turner (1995) have considered the possibility that dn=d ln k might be
observable in the microwave background. For most models this seems unlikely as the ef-
fect will be small, but there do exist inationary models leading to an e�ect that is large
enough to be observable. Whether this parameter generates any degeneracies with other
inationary or cosmological parameters in the shape of the Cl remains to be addressed.

B Toy model reconstructions with simulated data

We devote this subsection to carrying out a worked example of reconstruction on a faked
data set, to indicate the kind of accuracy that might be possible. We have tried to make
the outcome of analyzing the simulated data at least reasonably indicative of the sort that
high resolution microwave background experiments might achieve, based on the analysis
by Knox (1995) [see also Jungman et al., 1996]. However, our approach is strictly a toy
model; it is not intended to bear any resemblance to what one might actually do with high
accuracy observations. It seems very unlikely that observations such as CMB anisotropies
might be used to directly estimate the k-space spectra (though such an approach is common
with galaxy redshift surveys); the expectation is that if suitable quality data are obtained
then the appropriate procedure will be to push the theory forward from the spectra rather
than try to calculate the primordial spectra directly from the observations. That is, some
analysis such as a likelihood analysis would be used to �nd best �tting parameters such
as the amplitude and spectral indices of the scalars and tensors directly. Knox (1995) has
taken some �rst steps in this direction.

Perturbative reconstruction requires an expansion of the observations about a single
scale, which will end up corresponding to the location �0 on the potential about which it is
to be reconstructed. As discussed earlier, an expansion of the logarithm of the spectra in
terms of the logarithm of the wavenumber is the best way to proceed. It will always make
the most sense to choose the scale k0 about which the expansion is done to be near the
`central' point of the logarithmic k-interval8. Thus we write

lnA2
S(k) = lnA2

S(k0) + (n(k0)� 1) ln
k

k0
+
1

2

dn

d lnk

����
k0

ln2
k

k0
+ � � � ; (7.5)

8The word `central' is in quotes to indicate that the e�ective center point of the data may be biased
through tensors only being available on large scales, plus scale-dependent error bars on both scalars and
tensors. The word is intended to refer to the point best determined by the data assuming the type of �t

attempted.
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lnA2
T (k) = lnA2

T (k0) + nT (k0) ln
k

k0
+
1

2

dnT

d lnk

����
k0

ln2
k

k0
+ � � � ; (7.6)

where we have written in explicitly the observational quantities to which the coe�cients of
the expansion correspond.

A given observational program produces some �nite set of data with error bars, such
as a list of galaxy redshifts and sky positions, or a pixel map of the microwave sky. As
we said above, it is unlikely to be a useful strategy to try and obtain the power spectra
from these, and then use these to reconstruct. Rather, one should push the theory towards
the data by parametrizing the spectra and �tting for those parameters, as has been done
so successfully with COBE. Other parameters which a�ect the data interpretation, such as
the cosmological parameters, can be �xed or simultaneously �tted as required. The general
reconstruction framework we have described indicates an e�cient parametrization of the
spectra that could be used.

Despite the above, for our illustrative examples we have chosen to simulate data for
the spectra themselves, as it is the simplest thing to do. Enough is known (Knox, 1995;
Jungman et al., 1996) about the capabilities of CMB satellites in particular to enable a
fairly realistic example (in terms of the observational uncertainties) to be constructed. To
do anything else would obscure the principal issues. Our aim therefore is to simulate a set
of data, with errors, for the spectra, which when �tted give similar errors on parameters
to those expected had we carried out the full task of simulating say a microwave sky and
�tting directly for the spectral parameters. It is well outside the scope of this paper to
attempt a realistic simulation of what future data might actually look like.

As a simple test, we have simulated fake data sets for two di�erent models, as follows:

1. A power-law ination model with power-law index p = 21, chosen to yield n�1 = nT =
�0:1. Since power-law ination can be solved exactly we know the precise amplitude
of the spectra corresponding to a given normalization of the spectra, Eqs. (3.29) and
(3.47). This particular model has been advocated by White et al. (1995) as providing
a good �t to the current observational data.

2. An intermediate ination model (Barrow and Liddle, 1993), which gives a scale-
invariant spectrum of density perturbations but still possesses signi�cant gravitational
waves. We choose a version where scalars and tensors contribute equally to COBE
(to be precise, their contributions to the tenth multipole are chosen to be the same).
In this case, a precise calculation of the spectra cannot be made, so we compromise
by using the next-order approximation to generate the spectra from the underlying
model.

These models both have quite substantial gravitational waves. They have been chosen to be
compatible with present observational data, though they can be regarded as rather extreme
cases which maximize the chance of an accurate reconstruction.

The simulated data are constructed by the following procedure.

� The overall normalization reproduces the COBE result.

� The scalar error bars are consistent with cosmic variance limited microwave anisotropy
observations up to l = 200 (except that for simplicity we have modeled the errors by
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a gaussian rather than the formally correct �22l+1 distribution). Other cosmological
parameters, which a�ect the microwave anisotropy spectrum, are assumed �xed. The
COBRAS/SAMBA satellite can go to much higher l, but of course the other cosmo-
logical parameters will be uncertain which limits the estimation of the inationary
parameters. By stopping at l = 200, we �nd that the accuracy we obtain is similar
to that suggested by Jungman et al. (1996) for the full problem, so it serves as a
reasonable compromise.

� For the tensors, reasonable a priori estimates for the error bars are harder to estab-
lish. We have assumed data corresponding to l up to 40, which is where the tensor
contribution to Cl begins to cut o�, and we have chosen error bars so as to reproduce
the observational uncertainty in the tensor amplitude suggested by Knox (1995). We
then accept whatever uncertainty in the tensor spectral index this gives us, and it
happens to be in reasonable agreement with that suggested by Knox.

The simulated data for Model 1 are shown in Figure 2, along with the best �t recon-
structions. Since scalar data runs from l = 2 to 200, it covers two orders of magnitude in
wavenumber, corresponding to � lnk ' 4:6. The input and output parameters are shown in
Table 4. We performed two �ts, the �rst being a power-law �t and the second also allowing
for a variation in the scalar spectral index (though in fact the underlying spectrum has
none). The Figures and subsequent discussion use the former.

The results for Models 1 and 2 contain no particular surprises. Although this is intended
only to be indicative and certainly falls way short of the sophistication that can be brought
into play on realistic data, the error bars are probably fairly reasonable. As expected, the
tensor spectral index is the real stumbling block, but at least with these models one obtains
a strong handle on A2

T , thus allowing a unique reconstruction. For these reconstructions,
we �nd that the lowest-order consistency equation Eq. (4.11) is indeed satis�ed

0:108 � 0:013 = 2
A2
T

A2
S

= �nT = 0:25� 0:10 ; (7.7)

for Model 1 and

0:14 � 0:02 = 2
A2
T

A2
S

= �nT = 0:12 � 0:11 ; (7.8)

for Model 2. The same is true for the next-order version Eq. (5.7). For Model 1 we obtain

0:114 � 0:014 = 2
A2
T

A2
S

"
1� A2

T

A2
S

+ (1� n)

#
= �nT = 0:25 � 0:10 ; (7.9)

whereas for Model 2 we �nd

0:13 � 0:02 = 2
A2
T

A2
S

"
1� A2

T

A2
S

+ (1� n)

#
= �nT = 0:12 � 0:11 : (7.10)

While encouraging, we see that the test is not particularly strong due to the poorly
determined nT . In models where the tensors are even weaker than considered here, the task
of testing the consistency equation will be yet harder.
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Proceeding on to the reconstruction, Table 5 shows lowest-order and next-order recon-
structions, in comparison to the exact underlying potential for both Models. The consis-
tency equation has been used to eliminate nT as it is the most poorly determined quantity.
A next-order version of V 00(�0) cannot be obtained without a value for dn=d ln kjk0 , though
the size of the correction could be bounded from the error bars on the null result. The re-
constructed potentials, both lowest-order and next-order, for Model 1 are shown in Figure 3
in comparison to the underlying potential. A Taylor series has been used to generate them,
and the range of � shown corresponds to the range of observational data (a range of two
orders of magnitude in k) determined using Eq. (6.5).

We see that in both models the lowest-order reconstruction has been very successful.
The errors are dominated by those in measuring the tensor amplitude. However, in neither
case does the next-order result o�er a signi�cant improvement, given the observational error
bars. The main importance of the next-order result appears therefore to be in bounding the
theoretical error, rather than in providing improved accuracy in the overall reconstruction.

Figure 3 can be compared to a similar �gure in Liddle and Turner (1994), who investi-
gated reconstruction of a similar exponential potential. However, they did not include any
observational errors, concentrating instead on the theoretical errors and on the e�cacy of
di�erent expansion techniques for the potential. They also assumed reconstruction over a
wider range of scales, and had somewhat poorer convergence of the reconstructed potential
through expanding about one end of the data (the quadrupole) rather than the center.

VIII Other Ways to Constrain the Potential

Up until now we have concentrated, at least implicitly, on observations connected to large-
scale structure in the universe, including microwave background anisotropies. These cer-
tainly provide the best source of constraints on the inationary potential, and one should
be very pleased at the prospect of obtaining such constraints. However, they do cover only
a small portion of the full inationary potential. There is of course no way of uncover-
ing information about the potential relevant to larger scales (beyond waiting the relevant
number of Hubble times!), but in principle there are a variety of ways of constraining the
potential appropriate to smaller scales. We shall discuss such possibilities in this Section.
In particular, one may constrain the potential from the fact that ination must come to
an end some 50 e-foldings after the large-scale structure scales pass outside the Hubble ra-
dius. Further constraints are associated with the scalar and tensor perturbations on small
scales. In principle, laser interferometers could observe the tensor spectrum as a stochastic
background, though we shall see that this is not promising. The possible overproduction of
primordial black holes (PBHs) immediately after ination places upper limits on the am-
plitude of the last scalar uctuation to cross the Hubble radius just before ination ends,
while distortions to the microwave background spectrum limit scalar uctuations on mass
scales well below large-scale structure scales.

A To the end of ination and the area law

In traditional ination models, ination can come to an end in one of two ways. The �rst
is via some drastic event, such as a quantum tunneling (for example in extended ination)
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or a sudden instability (probably connected to a second �eld, as in hybrid ination). If
this happened, probably little information can be drawn from the behavior approaching the
end of ination. The second way ination may come to an end is simply by the potential
becoming too (logarithmically) steep to sustain ination any longer, as in generic chaotic
ination models, so that � reaches unity.

Let us see what one can conclude in the latter case. For de�niteness, let us assume
that 50 e-foldings are supposed to occur after the scale k0, about which reconstruction is
attempted, leaves the horizon. The modest dependence of this number on the details of
reheating will not be important. By assumption, ination will end precisely when � = 1.
The number of e-foldings which occur between two scalar �eld values is given exactly by

N =

s
4�

m2
Pl

Z �2

�1

1p
�(�)

d� : (8.1)

For our purposes, this can be neatly written as an integral constraint (Liddle, 1994a)

Z �end

�0

1p
�(�)

d�

mPl

=
50p
4�

: (8.2)

This can most easily be thought of graphically. We have reconstructed the value of �
and its derivative at �0, and know �(�end) = 1. As shown in Figure 4, if we plot the curve of
1=
p
� against �=mPl, it must be such that it reaches unity just as the area under it reaches

50=
p
4�. While there remain many ways in which the curve may do this, it does exclude

some possibilities such as a sudden attening of the potential after observable scales leave
the horizon.9

B Local detection of primordial gravitational waves

A number of authors have examined the possibility that the stochastic background of pri-
mordial gravitational waves produced during ination could be detected locally (Allen, 1988;
Grishchuk, 1989; Sahni, 1990; Souradeep and Sahni, 1992; White, 1992; Turner et al., 1993;
Liddle, 1994b; Bar-Kana, 1994). In general, the wavenumber of the gravitational waves is
related to the value of the inaton �eld during ination via the relation ln(k=k0) = 60�N ,
where N is the number of e-foldings before the end of ination and k0 = a0H0 � 3�10�18h
Hz is the wavenumber of the mode that is just reentering the Hubble radius at the present
epoch. Thus, the modes with wavenumbers associated with the maximum sensitivity of typ-
ical beam-in-space experiments (� 10�3Hz) �rst crossed the Hubble radius approximately
25 e-foldings before the end of ination. A direct detection of such waves would therefore
provide unique insight into a region of the inationary potential that cannot be probed by
large-scale structure observations. However, we shall see that this is unlikely to be possible.

9It appears that this can be used to derive an upper limit, albeit a weak one, on (�end � �0), from
the knowledge that � � 1. In fact this is not the case, since H starts to exhibit strong variation when �

approaches one. The number of e-foldings should then strictly be characterized by the increase in aH rather
than a alone (see Liddle et al. (1994) for details). In principle, a yet weaker constraint may be derived by
using energy scale arguments to limit how much H can decrease in the late stages of ination, but such a

constraint seems too weak to be worth pursuing.
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There are a number of gravitational wave detectors currently under construction or
proposal (see e. g. Thorne, 1987, 1995). The ground-based Laser Interferometer Gravita-
tional Wave Observatory (LIGO) should have a peak sensitivity of 
g � 10�11h�2 at 10
Hz (Christensen, 1992), where 
g is the energy density per logarithmic frequency interval.
The proposed space-based interferometers, the Laser Gravitational Wave Observatory in
Space (Faller et al., 1985; Stebbins et al., 1989) and the Laser Interferometer Space An-
tenna (Danzmann, 1995) probe lower frequencies, but with a sensitivity to at spectrum
stochastic sources which is less than that of LIGO.

After ination, the evolution of the gravitational wave perturbation is determined by
Eq. (3.43). We have already studied the e�ect of modes which have wavelengths greater
than the Hubble radius by the time of last scattering, which contribute to microwave back-
ground anisotropies. However, the scales which can be detected locally will have re-entered
the Hubble radius before the onset of matter domination. In this regime they behave as
radiation, so their energy density stays �xed during the radiation era but falls during the
matter era. This suppression factor is directly measured by the radiation density today,

rad = 4 � 10�5h�2. Thus the predicted amplitude on scales re-entering before matter-
radiation equality is (Allen, 1988; Sahni, 1990; Liddle, 1994b)


gh
2 =

2

3�

�
H

mPl

�2
� 4� 10�5 : (8.3)

For the ination models we have been discussing, H always decreases with time, and
hence the primordial amplitude on short scales is always less than that on large scales10.
The quadrupole anisotropy already places an extremely stringent limit on the amplitude
of the spectrum at large scales, and this immediately translates into a conservative, but
robust, constraint across all short scales of (Liddle, 1994b)


gh
2 � 4� 10�15 : (8.4)

This puts the inationary signal well out of reach of any of the proposed experiments.

C Primordial black holes

It has been conjectured that primordial black holes (PBHs) may form during the reheat-
ing phase immediately after ination (Khlopov, Malomed, and Zel'dovich, 1985; Carr and
Lidsey, 1993; Carr, Gilbert, and Lidsey, 1994; Randall, Solja�ci�c, and Guth, 1996; Garc��a-
Bellido et al., 1996). While there are considerable theoretical uncertainties attached to this
possibility, if such formation does occur, it can constrain the scalar spectrum at very short
scales. During ination the �rst scales to leave the Hubble radius are the last to come back
in and this implies that the very last uctuation to leave will be the �rst to return. In some
regions of the post-inationary universe, the uctuation will be so large that one expects
that the collapse of a local region into a black hole will become inevitable. The higher the
rms amplitude the larger the fraction of the universe forming PBHs. The observational

10`Superination' models have been considered within the context of superstring motivated cosmologies,
and it appears that in that case the gravitational wave amplitude could rise su�ciently on short scales to

be detectable (Brustein et al., 1995). However, no complete model, demonstrating how superination might
successfully end, has been constructed thus far (Brustein and Veneziano, 1994; Levin, 1995a).
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consequences of the evaporation of these black holes then leads to upper limits on the num-
ber that may form and hence on the magnitude of the spectrum on the relevant scales.
Thus, one may constrain the amplitude of the density spectrum on scales many orders of
magnitude smaller than those probed by large-scale structure observations and microwave
background experiments. These constraints lead to an upper limit on the spectral index
and may therefore provide insight into features of the inationary potential towards the end
of ination.

We parametrize the density spectrum in terms of the mass scale M associated with the
Hubble radius when a given mode reenters. Hence, �(M) / M (1�n)=6 de�nes the scalar
spectral index. PBHs are never produced in su�cient numbers to be interesting if n < 1,
but they could be if the spectrum is `blue' with n > 1.

When an overdense region with equation of state p = � stops expanding, it must have
a size greater than

p
 times the horizon size in order to collapse against the pressure. The

probability of a region of mass M forming a PBH is (Carr, 1975)

�(M) � �(M) exp

 
� 2

2�2(M)

!
: (8.5)

The constraints on �(M) in the range 1010g � M � 1017g have been summarized
by Carr and Lidsey (1993). In particular, PBHs with an initial mass � 1015g will be
evaporating at the present epoch and may therefore contribute appreciably to the observed
gamma-ray and cosmic-ray spectra at 100 MeV (MacGibbon and Carr, 1991). On the other
hand, 1010g PBHs have a lifetime � 1 sec and, if produced in su�cient numbers, would lead
to the photodissociation of deuterium immediately after the nucleosynthesis era (Lindley,
1980). PBHs of mass slightly below 1010g could alter the photon{to{baryon ratio just prior
to nucleosynthesis. An upper limit therefore arises by requiring that evaporating PBHs do
not generate a photon{to{baryon ratio exceeding the current value S0 = 109 (Zel'dovich
and Starobinsky, 1976).

Carr et al. (1994) have considered the constraints on �(M) below 1010g. In this region
the strongest constraint arises if evaporating PBHs leave behind stable Planck mass relics
(MacGibbon, 1987; Barrow, Copeland, and Liddle, 1992). The observational constraint
from the relics derives from the fact that they cannot have more than the critical density
at the present epoch, 
rel < 1.

The upshot of this analysis is that the spectral index is typically constrained to be
less than about 1.5, depending weakly on assumptions as to the reheat temperature after
ination and whether one takes into account the black hole relic constraint. Because the
constraint applies at the end of ination, on scales greatly separated from the microwave
anisotropies, it is independent of the COBE normalization and also of the choice of dark
matter. However, in this form it relies on the spectral index being constant right across
those scales (which it would be in the hybrid ination model (Copeland et al., 1994b)). For
general ination models it should be reinterpreted as a speci�c constraint on the amplitude
at the short scales being sampled.

Finally, a constraint on the amplitude of the spectrum at a scale corresponding to an
horizon mass � 0:1M� can in principle be derived from the recent observations of mas-
sive compact halo objects (MACHOs) (Alcock et al., 1993; Aubourg et al., 1993). The
estimated mass range of these objects suggests that they constitute about 0.1 per cent of
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the critical density. Although the favored explanation for these microlensing events is that
they are due to substellar baryonic brown dwarfs, it is quite possible that MACHOs may
be primordial black holes and therefore non{baryonic in nature (Nasel'skii and Polnarev;
Ivanov, Nasel'skii, and Novikov, 1994; Yokoyama, 1995). Such PBHs could form from vac-
uum uctuations in the manner discussed above if the amplitude of spectrum is su�ciently
high on the appropriate scale. This may be possible, for example, if the potential has a
suitable form (Ivanov et al., 1994). Alternatively, a spike may be imposed on the underlying
spectrum by the quantum uctuations of a second scalar �eld (Yokoyama, 1995; Randall
et al., 1996; Garc��a-Bellido et al., 1996). If the amplitude is too high on this particular
scale, however, it would lead to the overproduction of MACHO-PBHs. Consistency with
the observations therefore constrains both the spectrum and the inationary potential.

D Spectral distortions

A further constraint on �(M) over mass scales considerably smaller than those corresponding
to large-scale structure may be derived by considering departures of the microwave spectrum
away from a pure blackbody. (For detailed reviews see e. g. Danese and de Zotti (1977) and

Sunyaev and Zel'dovich (1980)). Above a redshift of zy � 2:2 � 104
�

Bh

2
��1=2

, Compton
scattering is able to establish local thermodynamic equilibrium whenever there is a sudden
redistribution or release of energy into the universe (Burigana, Danese, and de Zotti, 1991).
This produces a Bose{Einstein spectrum n / [exp(x+ �)� 1]�1 that is characterized by a
chemical potential �, where x = h�=kT . (A Planck spectrum corresponds to � = 0). On the
other hand, equilibrium cannot be established for redshifts just below zy. The distribution
of energy at this time could therefore lead to observable spectral distortions (� 6= 0) in the
microwave background at the present epoch. The Far Infrared Absolute Spectrophotometer
(FIRAS) aboard COBE has constrained the spectral distortion to be j�j < 3:3 � 10�4

(Mather et al., 1994), whilst Hu, Scott, and Silk (1994) have strengthened this limit by
considering the COBE measurement of temperature uctuations on 10� (Bennett et al.,
1994). They �nd that � < 5:0 � 105(�T=T )210� � 6:3� 10�5.

These limits imply that photon di�usion would have been the dominant mechanism
for producing spectral distortions (Daly, 1991). Silk (1967) �rst showed that the damping
of adiabatic uctuations can proceed if their mass scales are below a characteristic mass
known as the Silk mass. At su�ciently early times, the photons and baryons in the universe
are strongly coupled through Thomson scattering and they therefore behave as a single
viscous uid. When adiabatic uctuations reenter the Hubble radius, they set up pressure
gradients and these result in pressure waves that oscillate as sound waves. As the epoch
of recombination approaches, however, the mean{free{path of the photons increases and
the photons are able to di�use out of the overdense regions into underdense regions. Thus,
the inhomogeneities in the photon{baryon uid are damped. The energy stored in the
uctuations is redistributed by the di�usion of photons and it is this transfer of energy during
the epoch near to zy that produces the spectral distortions. The uctuations that lead to
these potentially observable e�ects have mass scales in the range 10�3 < M=M� < 103

(Sunyaev and Zel'dovich, 1970; Barrow and Coles, 1991).
The observational upper limit on � implies an upper limit on the amplitude of the

pressure wave and therefore a limit on �(M). The energy density in a linear sound wave is
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�u2, where u � c=
p
3 is the sound speed. Thus, the dimensionless energy release caused by

the damping is q � �2=3. It can be shown that the spectral distortion is given by � � 1:4q
and it follows, therefore, that � < 1:46

p
� � 0:01.

By normalizing the spectrum at COBE scales (� 1022M�), an upper limit on the spectral
index may be derived. Barrow and Coles (1991) and Daly (1991) assume that the distortion
is entirely due to the largest amplitude wave and deduce a limit of n < 1:8 for M �
10�3M�. (The limit becomes weaker for larger scales). Hu et al. (1994) have derived a
stronger constraint of n < 1:5 by re�ning these calculations. This is comparable to the
PBH constraints we have just discussed (though somewhat weaker if one believes the PBH
relic constraint). However, it is probably more reliable because it is based on physics that
is relatively well understood and requires a less severe extrapolation to smaller scales.

IX Conclusions

In this paper, we have reviewed the relationship between observations of microwave aniso-
tropies and of large-scale structure and the possibility of connecting them to the potential
energy of a scalar �eld driving ination. We have argued that, given suitable quality obser-
vations, the inationary idea can be tested and then features of the inationary potential
can be directly measured. In many ways this is remarkable, given that it is impossible, by
many orders of magnitude, for an Earth-based accelerator to pursue this task.

It is predicted that ination produces both gravitational waves and density perturba-
tions. Consequently, the employment of observations may be divided into two main parts.
The most challenging is the test of the inationary consistency relations; if these prove
testable and are con�rmed, it will provide a powerful vindication of the chaotic ination
paradigm. One could then feel con�dent in following the less observationally challenging
task of employing observations to discern information regarding the inationary potential,
in the form of its value and that of its �rst few derivatives at a single point.

We have indicated the di�erent approximation schemes that must be invoked. Of
paramount importance is the slow-roll expansion, but this must also be coupled to an
expansion of the observables. In the simplest instance this latter expansion corresponds to
the approximation of power-law spectra. The lowest levels of approximation are certainly
able to cope with present-day observations of both microwave anisotropies and large-scale
structure. However, in this work we have been forward looking, since the demands that
will be imposed on theoretical accuracy by future observations, especially satellite-based
microwave background anisotropy measurements, will be high. Indeed, they could in prin-
ciple threaten the limits of present-day theoretical knowledge regarding the calculation of
the spectra.

We must emphasize that our calculations have all been implemented within the standard
paradigm for chaotic ination. The vast majority of known viable models can be expressed
within this class, either trivially or by cunning manipulation, but one should bear in mind
that there exist some models of ination for which this is not the case. In some examples,
such as old versions of the open inationary scenario or some multi-�eld theories, this is
because the predictions turn out to be dependent on initial conditions. Although such a
situation would be unfortunate it is not logically excluded. Other theories, such as the
recently investigated single-bubble open inationary models, rely on dynamics that are
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much more complicated than that of the standard scenario (Sasaki et al., 1993; Bucher et
al., 1994; Linde, 1995). They therefore lead to a more complicated relationship between
theory and observations. Furthermore, even if the inationary hypothesis is indeed correct,
it may be the case that the actual model produces a very low amplitude of gravitational
waves (Lyth 1996). This would make them impossible to measure and such a situation would
remove the ability to make a consistency check and thus eliminate most of the potential for
reconstruction.

Finally, there remains every possibility that the entire inationary idea is incorrect; if
so, one can at least hope that this is manifested in a failure of the consistency relations.
However, it may not prove possible to test the consistency relations; might one then blunder
into reconstructing a non-existent object? With su�ciently good observations, such as a
CMB satellite will provide, the answer should be no. The Cl spectrum, when it is observed,
will contain huge amounts of degenerate information. If the correct underlying theory is
topological defects, (see for example Vilenkin and Shellard, 1994), the spectral shape should
be very di�erent to any simple ination model for any values of the cosmological parameters.
One can certainly reconstruct a `potential' which would give the observed Cl, but it would
probably be of such a complex form as to have little particle physics motivation for it,
leaving people to search for other explanations.

In a standard ination scenario, the Cl give a complete description of the gaussian
perturbations generated. This prediction can also be tested against the observations; present
observations are compatible with gaussianity though they are not strong enough to give a
convincing test. In the future we can expect such tests to be widely applied. While in
principle it is possible to construct ination models giving non-gaussian perturbations, in
practice such models are so contrived that again, were such features detected, one would
quickly be looking for a more plausible theory for the origin of perturbations. It might well
also be that the shape of the power spectrum might be incompatible with the non-gaussian
nature, within the general context of ination.

The bulk of this review has covered work already discussed in the literature. We have
given an extensive account of the Stewart and Lyth (1993) calculation of the perturbation
spectra, which provides the accuracy needed to discuss anticipated observations. The re-
construction framework has then been described to an accuracy which ought to be su�cient
for years to come. However, as well as the review material, we have brought to light a few
new results and viewpoints and we summarize these here.

� The consistency equation discussed in the present literature is just one of an in�nite
hierarchy of consistency equations, each of which can be taken (in principle) to arbi-
trary accuracy in the slow-roll expansion. Kosowsky and Turner (1995) have written
down the form for the second member and we have reproduced it here. However, it
is probable that only the �rst consistency equation will ever be tested.

� We have indicated that since scalar perturbations are much easier to measure than
tensor ones, the appropriate form of the �rst consistency equation to consider is not
the lowest-order version, but rather the next-order version. One requires nT to test the
lowest-order version and it is very unlikely that such observations would be available
without there also being the appropriate ones to include the next-order version as well.
(The only new ingredient in the next-order version over and above those quantities in
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the lowest-order version is n).

� We have been more explicit than previous work as to how observations of the primor-
dial spectra should be handled in terms of an expansion in lnk. We discussed how
this expansion relates to the slow-roll expansion. A worked example on simulated
data has illustrated these ideas in action.

In conclusion, therefore, the relationship between inationary cosmology and large-scale
structure observations is well understood and the theoretical machinery necessary for taking
advantage of high accuracy observations is now in place. These promise the possibility
of constraining physics at energies inaccessible to any other form of experiment. Such
observations are eagerly awaited.
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Tables

Gravitational Waves Gravitational Waves
Important Negligible

n < 1 � large, � < 2� � small, � < �2�
Power-Law Ination Natural Ination

n ' 1 � large, � ' 2� �, j�j small
Intermediate Ination Hybrid Ination

n > 1 � large, � > 2� � small, � > 2�
Hybrid Ination

Table 1: This table illustrates the di�erent possible inationary behaviors, and quotes a speci�c
ination model which gives each (except the bottom left case, which while possible in principle has not had
any speci�c inationary model devised). The description `large' implies signi�cantly larger than zero (but

still less than unity).

lowest-order next-order (exact)

V (�0) H(�0) H(�0), �(�0)
V 0(�0) H(�0), �(�0) H(�0), �(�0), �(�0)
V 00(�0) H(�0), �(�0), �(�0) H(�0), �(�0), �(�0), �(�0)
V 000(�0) H, �(�0), �(�0), �(�0) ||{

Table 2: A summary of the inationary parameters [H and the slow-roll parameters �, �, and � de�ned
in Eqs. (2.27){(2.29)] needed to reconstruct a given derivative of the potential to a certain order. See Eqs.
(5.10){(5.12). Note that the next-order result is exact.
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observable lowest-order next-order

A2
T (k0) H(�0) H(�0), �(�0)

A2
S(k0) H(�0), �(�0) H(�0), �(�0), �(�0)
n(k0) �(�0), �(�0) �(�0), �(�0), �(�0)

dn=d lnkjk0 �(�0), �(�0), �(�0) ||{

Table 3: The observables, A2

T , A
2

S, n, and dn=d ln k at the point k0 may be expressed in terms of H

and the slow-roll parameters at the point �0. Table 3 lists the ination parameters required to predict the
observable to the indicated order. (See Section 5.1.)

parameter lowest-order next-order

H A2
T A2

T , A
2
S

� A2
T , A

2
S A2

T , A
2
S , n

� A2
T , A

2
S , n A2

T , A
2
S , n, dn=d ln k

� A2
T , A

2
S , n, dn=d ln k ||{

Table 4: The ination parameters may be expressed in terms of the observables, A2

T , A
2

S, n, and
dn=d ln k (see Section 5.1). Through judicious use of the consistency relations one may employ di�erent

combinations of observables than listed here, e.g., use of nT rather than A2

T =A
2

S.

lowest-order next-order next-to-next-order

V A2
T A2

T , A
2
S A2

T , A
2
S , n

V 0 A2
T , A

2
S A2

T , A
2
S , n A2

T , A
2
S , n, dn=d ln k

V 00 A2
T , A

2
S , n A2

T , A
2
S , n, dn=d ln k ||{

V 000 A2
T , A

2
S , n, dn=d lnk ||{ ||{

Table 5: A summary of the observables needed to reconstruct a given derivative of the potential to a

certain order. The potential and its derivatives are given at a point �0, and A2

T , A
2

S, n, and dn=dk are to be
evaluated at the point k0.
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Model 1 Input Output (power-law �t) Output (including dn=d ln kjk0)

A2
S 2:5� 10�10 (2:45 � 0:09) � 10�10 (2:45 � 0:10) � 10�10

A2
T 0:12 � 10�10 (0:132 � 0:015) � 10�10 (0:132 � 0:015) � 10�10

n� 1 �0:1 �0:11� 0:02 �0:115 � 0:035
nT �0:1 �0:25� 0:10 �0:25 � 0:10

dn=d lnkjk0 0 | 0:003 � 0:018

Model 2 Input Output (power-law �t) Output (including dn=d ln kjk0)

A2
S 1:34 � 10�10 (1:27 � 0:04) � 10�10 (1:28 � 0:04) � 10�10

A2
T 0:094 � 10�10 (0:09 � 0:01) � 10�10 (0:09 � 0:01) � 10�10

n� 1 0:00 0:04 � 0:02 0:06 � 0:03
nT �0:2 �0:12� 0:11 �0:12� 0:11

dn=d ln kjk0 0 | �0:01� 0:02

Table 6: Input and output values from the two simulated data sets. The amplitudes are given at the
central k value (in log units) for the scalars, notionally corresponding to the 20-th multipole.

Model 1 Underlying Lowest-order Next-order
potential reconstruction reconstruction

1012V (�0)=m
4
Pl 28.2 31� 4 31� 4

1012V 0(�0)=m
3
Pl -43.6 �51� 9 �52� 9

1012V 00(�0)=m
2
Pl 67.5 83� 25 |

Model 2 Underlying Lowest-order Next-order
potential reconstruction reconstruction

1012V (�0)=m
4
Pl 22.4 21� 2 21� 2

1012V 0(�0)=m
3
Pl -38.9 �40� 7 �37� 6

1012V 00(�0)=m
2
Pl 94.5 123 � 27 |

Table 7: Input potential compared with reconstructions for the two models.
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Figure Captions

Figure 1

A schematic illustration of the reconstruction strategy. The spectra AS of the density per-
turbations and AT of the gravitational waves are measured over some range of scales which
corresponds to some interval of the underlying potential V (�).

Figure 2

The simulated data of Model 1, with error bars. The circles are A2
S and squares are A2

T . The
horizontal axis is in hMpc�1. The lines show the best power-law �ts to the simulated data,
as given in Table 2. Showing the data in the form of the spectra is schematic; an analysis of
true observations would directly �t the amplitude and spectral index to measured quantities.

Figure 3

The reconstructed potentials compared to the underlying one, from the data in Model
1 in Table 4. The dashed line shows the true underlying exponential potential. The two
solid lines, which nearly overlap, are Taylor series reconstructions, one using just lowest-
order information and the other using the available next-order information. The length of
these lines corresponds to the range of k for which the simulated data is available. The
observational errors (not shown) dominate the theoretical errors, and of course when taken
into account the reconstructions are consistent with the true potential.

Figure 4

An illustration of the area law. Reconstruction �nds � and perhaps its derivative, between
60 and 50 e-foldings from the end of ination, illustrated by the solid part of the curve
which ends at a scalar �eld value indicated by �50. After large-scale structure scales leave
the horizon, � (now shown as a dotted curve) must behave so that it reaches unity just as
the shaded area under the curve of ��1=2 against �=mPl reaches 50=

p
4�.
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