427 research outputs found

    Increasing flood exposure in the Netherlands: implications for risk financing

    Get PDF
    The effectiveness of disaster risk management and financing mechanisms depends on an accurate assessment of current and future hazard exposure. The increasing availability of detailed data offers policy makers and the insurance sector new opportunities to understand trends in risk, and to make informed decisions on ways to deal with these trends. In this paper we show how comprehensive property level information can be used for the assessment of exposure to flooding on a national scale, and how this information provides valuable input to discussions on possible risk financing practices. The case study used is the Netherlands, which is one of the countries most exposed to flooding globally, and which is currently undergoing a debate on strategies for the compensation of potential losses. Our results show that flood exposure has increased rapidly between 1960 and 2012, and that the growth of the building stock and its economic value in flood-prone areas has been higher than in non-flood-prone areas. We also find that property values in flood-prone areas are lower than those in non-flood-prone areas. We argue that the increase in the share of economic value located in potential flood-prone areas can have a negative effect on the feasibility of private insurance schemes in the Netherlands. The methodologies and results presented in this study are relevant for many regions around the world where the effects of rising flood exposure create a challenge for risk financing

    Mouse models of ageing and their relevance to disease

    Get PDF
    Ageing is a process that gradually increases the organism’s vulnerability to death. It affects different biological pathways, and the underlying cellular mechanisms are complex. In view of the growing disease burden of ageing populations, increasing efforts are being invested in understanding the pathways and mechanisms of ageing. We review some mouse models commonly used in studies on ageing, highlight the advantages and disadvantages of the different strategies, and discuss their relevance to disease susceptibility. In addition to addressing the genetics and phenotypic analysis of mice, we discuss examples of models of delayed or accelerated ageing and their modulation by caloric restriction

    Cosmological Particle Creation in the Presence of Lorentz Violation

    Full text link
    In recent years, the effects of Lorentz symmetry breaking in cosmology has attracted considerable amount of attention. In cosmological context several topics can be affected by Lorentz violation,e.g., inflationary scenario, CMB, dark energy problem and barryogenesis. In this paper we consider the cosmological particle creation due to Lorentz violation (LV). We consider an exactly solvable model for finding the spectral properties of particle creation in an expanding space-time exhibiting Lorentz violation. In this model we calculate the spectrum and its variations with respect to the rate and the amount of space-time expansion.Comment: 6 pages, 6 figures, To appear in Physics Letters

    Thermal Particle Creation in Cosmological Spacetimes: A Stochastic Approach

    Get PDF
    The stochastic method based on the influence functional formalism introduced in an earlier paper to treat particle creation in near-uniformly accelerated detectors and collapsing masses is applied here to treat thermal and near-thermal radiance in certain types of cosmological expansions. It is indicated how the appearance of thermal radiance in different cosmological spacetimes and in the two apparently distinct classes of black hole and cosmological spacetimes can be understood under a unifying conceptual and methodological framework.Comment: 17 pages, revtex (aps, eqsecnum), submitted to PRD, April 199

    BEC Collapse and Dynamical Squeezing of Vacuum Fluctuations

    Get PDF
    We analyze the phenomena of Bose Novae, as described by Donley et al [Nature 412, 295 (2001)], by focusing on the behavior of excitations or fluctuations above the condensate, as driven by the dynamics of the condensate (rather than the dynamics of the condensate alone or the kinetics of the atoms). The dynamics of the condensate squeezes and amplifies the quantum excitations, mixing the positive and negative frequency components of their wave functions thereby creating particles which appear as bursts and jets. By analyzing the changing amplitude and particle content of these excitations, our simple physical picture (based on a test field approximation) explains well the overall features of the Bose Novae phenomena and provide excellent quantitative fits with experimental data on several aspects, such as the scaling behavior of the collapse time and the amount of particles in the jet. The predictions of the bursts at this level of approximation is less than satisfactory but may be improved on by including the backreaction of the excitations on the condensate. The mechanism behind the dominant effect -- parametric amplification of vacuum fluctuations and freezing of modes outside of horizon -- is similar to that of cosmological particle creation and structure formation in a rapid quench (which is fundamentally different from Hawking radiation in black holes). This shows that BEC dynamics is a promising venue for doing `laboratory cosmology'.Comment: Latex 36 pages, 6 figure

    Correlation Entropy of an Interacting Quantum Field and H-theorem for the O(N) Model

    Full text link
    Following the paradigm of Boltzmann-BBGKY we propose a correlation entropy (of the nth order) for an interacting quantum field, obtained by `slaving' (truncation with causal factorization) of the higher (n+1 th) order correlation functions in the Schwinger-Dyson system of equations. This renders an otherwise closed system effectively open where dissipation arises. The concept of correlation entropy is useful for addressing issues related to thermalization. As a small yet important step in that direction we prove an H-theorem for the correlation entropy of a quantum mechanical O(N) model with a Closed Time Path Two Particle Irreducible Effective Action at the level of Next-to-Leading-Order large N approximation. This model may be regarded as a field theory in 00 space dimensions.Comment: 22 page

    Inflationary Reheating in Grand Unified Theories

    Get PDF
    Grand unified theories may display multiply interacting fields with strong coupling dynamics. This poses two new problems: (1) What is the nature of chaotic reheating after inflation, and (2) How is reheating sensitive to the mass spectrum of these theories ? We answer these questions in two interesting limiting cases and demonstrate an increased efficiency of reheating which strongly enhances non-thermal topological defect formation, including monopoles and domain walls. Nevertheless, the large fluctuations may resolve this monopole problem via a modified Dvali-Liu-Vachaspati mechanism in which non-thermal destabilsation of discrete symmetries occurs at reheating.Comment: 4 pages, 5 ps figures - 1 colour, Revtex. Further (colour & 3-D) figures available from http://www.sissa.it/~bassett/reheating/ . Matched to version to appear in Phys. Rev. let
    corecore