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The stochastic method based on the influence functional formalism introduced in an earlier paper to treat
particle creation in near-uniformly accelerated detectors and collapsing masses is applied here to treat thermal
and near-thermal radiance in certain types of cosmological expansions. It is indicated how the appearance of
thermal radiance in different cosmological spacetimes and in the two apparently distinct classes of black hole
and cosmological spacetimes can be understood under a unifying conceptual and methodological framework.
@S0556-2821~97!02520-4#

PACS number~s!: 04.62.1v, 05.40.1j, 42.50.Lc, 98.80.Hw

I. INTRODUCTION

Particle creation in cosmological spacetimes was first dis-
cussed by Parker@1#, Sexl and Urbantke@2#, Zel’dovich and
Starobinsky@3# in the late 1960s. The basic mechanism can
be understood as parametric amplification of vacuum fluc-
tuations by an expanding universe@4,5#. Particle creation in
black hole spacetimes was first discovered by Hawking@6#
~see also@7#!. A similar effect in a uniformly accelerated
detector was discovered by Unruh@8# and in a moving mir-
ror by Davies and Fulling@9#. One special class of cosmo-
logical spacetimes which shows this characteristic thermal
radiance is the de Sitter Universe, as shown by Gibbons and
Hawking @10#. One feature common to all these systems is
that they all possess event horizons, and the conventional
way to understand the thermal character of particle creation
is by way of the periodicity on the propagator of quantum
fields defined on the Euclidean section of the spacetime
@11,12#.

One would not usually think of cosmological particle cre-
ation as thermal because in general such conditions~event
horizon and periodicity! do not exist. However, several au-
thors have shown that thermal radiance can arise from cos-
mological particle creation in spacetimes without an event
horizon@13–18#. Each case has its particular reason for gen-
erating a thermal radiance, but there is not much discussion
of the common ground for these cases of cosmological
spacetimes. There also seems to be a gulf between our un-
derstanding of the mechanisms giving rise to thermal radi-

ance in these two classes of spacetimes, i.e., spacetimes with
and without event horizons.1

In some of our earlier papers we have discussed thermal
radiance in the class of spacetimes which possess event ho-
rizons ~uniformly accelerated detectors@20–22#, moving
mirrors and black holes@21,23#! using the viewpoint of ex-
ponential scaling@24,25# and the method of statistical field
theory @26,27#. In a recent paper@23# we show how this
method can be applied to spacetimes which possess event
horizons only in some asymptotic limit, such as near-
uniformly or finite-time accelerated detectors, and collapsing
masses. In this paper, we study thermal particle creation
from cosmological spacetimes with the aim of providing a
common ground for cases where thermal radiance was re-
ported before. Using the stochastic method, we show how to
derive near-thermal radiance in spacetimes without an event
horizon.

The two primary examples we picked here for analyzing
this issue are that of Parker and Berger@13,14# for an expo-
nentially expanding universe, and that of slow-roll inflation-
ary universes, in particular, the Brandenberger-Kahn model
@18#. In Sec. II we examine several simple cosmological ex-
pansions which admit thermal particle creation and show
their common ground, and their connection with thermal ra-
diation in the~static coordinatized! de Sitter spacetime. We
point out that all cases which report thermal radiation in-
volve an exponential scale transformation@24,25#. Thermal
radiance observed in one vacuum can be understood as aris-
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1Note that both of these effects are present in particle creation in
a noneternal black hole spacetime—over and above the thermal
Hawking radiation for an eternal black hole, there is also the con-
tribution from backscattering of waves over a time-dependent clas-
sical effective potential, see, e.g.,@19#.
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ing from the exponential scaling of vacuum fluctuations of
the other vacuum@28#. Section III applies this method to the
Parker-Berger model to show how thermal radiance can be
derived from exponentially scaled vacuum fluctuations. Sec-
tion IV discusses particle creation from a slow-roll inflation-
ary universe and shows how near-thermal radiance can be
derived in cases which depart from strictly exponential ex-
pansion. We end with a brief discussion in Sec. V.

II. THERMAL PARTICLE CREATION
IN COSMOLOGICAL SPACETIMES:

EXPONENTIAL SCALING

Consider a spatially flat (k50! Robertson-Walker~RW!
universe with the metric

ds25dt22a2(
i

~dxi !2, ~2.1!

wheret is cosmic time. A conformally coupled massive (m)
scalar fieldF obeys the wave equation~e.g.,@30#!

@h1m21R/6#F~ t,x!50, ~2.2!

where h is the Laplace-Beltrami operator, and
R56@ ä/a1(ȧ/a)2# is the curvature scalar. In a spatially ho-
mogeneous space, the space and time parts of the wave
function separate, with mode decompositionF(t,x)
5(kfk(t)wk(x). For a spatially flat RW universe
wk(x)5eikx, and the conformally related amplitude function
xk(h)5afk(t) of the kth mode obeys the wave equation in
conformal timeh5*dt/a:

xk~h!91@k21m2a2~h!#xk~h!50. ~2.3!

Call Fk
in,out(t,x) the modes with only positive frequency

components att252` andt151`, respectively. They are
related by the Bogolubov coefficientsak ,bk as follows:

Fk
in~ t,x!5akFk

out~ t,x!1bkF2k
out* ~ t,x!. ~2.4!

@For conformal fields it is convenient to use the conformally
related wave functionX(h,x)5aF(t,x). One can define the
conformal vacua ath6 with x in, out in terms of the positive
frequency components.# The modulus of their ratio is useful
for calculating the probabilityPn(kW ) of observingn particles
in modekW at late times@14#:

Pn~kW !5ubk /aku2nuaku22. ~2.5!

From this one can find the average number of particles^NkW&
created in modekW ~in a comoving volume! at late times to be

nk[^Nk&5 (
n50

`

nPn~kW !5ubku2. ~2.6!

A. Bernard-Duncan model

In a model studied by Bernard and Duncan@16# the scale
factor a(h) evolves like

case 1: a2~h!5A1Btanhrh, ~2.7!

which tends to constant valuesa6
2 [A6B at asymptotic

times h→6`. Here r measures how fast the scale factor
rises, and is the relevant parameter which enters in the tem-
perature of thermal radiance. With this form for the scale
function,ak ,bk have analytic forms in terms of products of
gamma functions. One obtains

ubk /aku25sinh2~pv2 /r!/sinh2~pv1 /r!, ~2.8!

where

v65
1

2
~vout6v in!, v in

out5Ak21m2a6
2 . ~2.9!

For cosmological models in whicha(1`)@a(2`), the ar-
gument of sinh is very large@i.e., (p/r)v6@1#. To a good
approximation this has the form

ubk /aku25exp~22pv in /r!. ~2.10!

For high momentum modes, one can recognize the Planckian
distribution with temperature given by

kBTh5r/~2pa1! ~2.11!

as detected by an observer~here in the conformal vacuum! at
late times.

B. Parker-Berger model

This model is similar in spirit to the one proposed by
Parker earlier@14#, who considered a massless, minimally
coupled scalar field in a Robertson-Walker universe with
metric

ds25a6dt22a2(
i

~dxi !2 ~2.12!

wheret is a time defined bydt5a3dt. The scale factora is
assumed to approach a constant att→6`, where in these
asymptotic regions one can define a vacuum with respect to
t time and construct the corresponding field theory. He con-
sidered the general class of functions for the scale factor
~from Epstein and Eckart@31#!

case 2: a4~t!5a1
41est@~a2

42a1
4!~est11!1b#

3~est11!22 ~2.13!

wherea1 ,a2 ,b are adjustable parameters witha2.a1, ands
is the rise function~similar to ther in the earlier case in
terms of the conformal vacuum!. The modulus of the ratio of
the Bogolubov coefficients is given by@14#

Ubk

ak
U2

5
sin2pd1sinh2~pv2 /s!

sin2pd1sinh2~pv1 /s!
, ~2.14!

whered is a real number involving the constantb and

v6[k~a1
26a2

2!. ~2.15!

For cosmological models in whicha2@a1, the argument of
the sinh is very large, as in case 1. Then, to a good approxi-
mation Eq.~2.14! has the form
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ubk /aku25exp~24pka1
2/s!. ~2.16!

This form is independent of the adjustable parametersb,a2.
From this one can show that the amount of particle creation
is given by

nk5@exp~mk!21#21, ~2.17!

wherem54pa1
2/s. Converting to the physical momentum at

late timesp5k/a2, one sees that this is a Planckian spectrum
characteristic of thermal radiance with temperature

kBTt5s/~4pa1
2a2!. ~2.18!

How sensitively does the thermal character of particle cre-
ation depend on the scale factor? From physical consider-
ations, the period when particle creation is significant is

when the nonadiabaticity parameterV̄ satisfies@5#

V̄[V8/V2>1. ~2.19!

HereV is the natural frequency~given byka2 in this case!
andV85dV/dt. Using this criterion, Parker argued that sig-
nificant particle creation occurs during an early period when
et/s ~or in the first case,eh/r) is small, whencea4 has effec-
tively the form

case 3: a4~t!5a1
41a0

4et/s, ~2.20!

wherea0 is an adjustable parameter. This form of the scale
factor was used by Berger@13# for the calculation of particle
creation in a Kasner universe, who also reported thermal
radiation. Since particle creation vanishes at early and late
times ~as measured by the nonadiabaticity parameter!, adia-
batic vacua can be defined then and one can construct WKB
positive and negative frequency solutions for the calculation
of the Bogolubov coefficients. Parker@14# showed explicitly
that the modulus of their ratio has the same exponential form
as that of the more complicated scale function~2.13!, which,
as we have seen, is what gives rise to the thermal character
of the spectrum. Indeed he speculated that the exponential
form in ub/au should hold for a general class of scale func-
tions which possess the properties that~1! they smoothly
approach a constant at early time,~2! their values at late
times are much larger than at initial times, and most impor-
tantly, ~3! they and their derivatives are continuous func-
tions. The exponential factor contained in the scale functions
in all three cases above at early times is thus responsible for
the thermal property of particle creation, with the tempera-
ture proportional to the rise factor in the exponential function
(s or r in the first case!. He also noted that this property is
quite insensitive to the late time asymptotically static behav-
ior of a(t) ~it could be the flattening behavior of a tanh
function, or the rising behavior of an exp function!.

C. Common features

The three examples related above highlight an important
common feature of thermal particle creation. That is, that a
period of exponential expansion in the scale factor would
give rise to thermal particle creation, i.e., an observer in the
in vacuum before the expansion reports zero particle, while

an observer in the out vacuum after the exponential expan-
sion will report a thermal particle spectrum with temperature
proportional to the rise factor in the exponential function in
that particular time~e.g., conformal timeh in Bernard and
Duncan’s model,t in Parker’s model, and cosmic timet in
the de Sitter universe example below!. The exponential scale
factor and the relation between these two vacua are impor-
tant to understanding particle creation in cosmological space-
times on the same footing as that in the class of spacetimes
with event horizons, including that of a uniform accelerated
observer, a moving mirror, black holes, and the de Sitter
universe.

To put the physics in a more general context, consider
two vacua related by some transformation. Let us define the
asymptotic in vacuum asu0& t , the asymptotic out vacuum as
u0&out, and the vacuum of an observer undergoing exponen-
tial expansion asu0&s . The in and out vacua are well defined
because the scale factor approaches a constant at asymptotic
past and future times, thus imparting the space with a Killing
vector] t with respect to which one can define particle states
in terms positive frequency modes. Thes vacuum is defined
with respect to a different set of mode functions~like the
Fulling-Rindler vacuum vis-a-vis the Minkowski vacuum for
a uniformly accelerated observer!. The above examples cal-
culate the particle creation between an in and out vacuum,
but they also illustrate the important fact that the number of
particles created is insensitive to the behavior of the scale
function at late times, e.g., the result for the flattening tanh
function which gives an asymptotically static universe is the
same as that of the exponential function. Furthermore, the
thermal nature of particle creation depends only on the initial
stage of exponential expansion. In@28,29# these findings
were used to connect the result of thermal radiance in these
two classes of spacetimes. The assertion is that the more
basic cause of thermality lies in the exponential scaling be-
havior rather than the existence of an event horizon@24,25#.
~The latter necessarily implies the former, but the converse is
not always true.! The fine distinction between these two
ways of understanding~kinematic versus geometric! thermal
radiance will enable us to treat nonthermal cases in space-
times which do not possess event horizons@23#, and to ex-
plore the stochastic nature of the Hawking-Unruh effect.

At this point it is perhaps also useful for us to adopt this
kinematic viewpoint to reexamine the cause of thermal radi-
ance in a de Sitter universe.

D. de Sitter universe

The de Sitter universe metric can be expressed in many
different coordinates~see, e.g.,@30#!. There is the so-called
closed (k51! Robertson-Walker ~RW! coordinatization
which covers the whole space,a(t)5cosh(Ht), the flat
(k50! RW coordinatization which covers only half of de
Sitter space with scale factora(t)5eHt, and the static coor-
dinate shown below, to name just the commonly encountered
ones. The vacuum states defined with respect to different
coordinatization and normal mode decomposition have been
studied by many authors@32#. In the static coordinate the
metric is given by

ds25@12~H r̃ !2#d t̃ 22
d r̃ 2

@12~H r̃ !2#
. ~2.21!
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Note that an event horizon exists atr̃ 5H21 for observers at
r̃ 50, following the trajectory generated by the Killing vec-
tor ] t̃ . This is similar in form to a Schwarzschild metric for
a massive (M ) object, restricted to 2 dimensions:

ds25S 12
2M

r Ddt22
dr2

„12~2M /r !…
, ~2.22!

for which Hawking@6# first reported the famous black hole
thermal radiance effect.

Calculation of particle creation in the static de Sitter uni-
verse was carried out by Gibbons and Hawking@10# ~GH!
using the periodicity condition in the field propagator. La-
pedes@33# gave derivations based on the use of Bogolubov
transformations, and Brandenberger and Kahn@18# treated
the asymptotically de Sitter case. Let us analyze the relation
between particle creation calculated in the Gibbons-Hawking
vacuum~defined with respect to the ‘‘static’’ de Sitter time
t̃ ) u0& t̃ and that in the Robertson-Walker (k50! vacuum
~defined with respect to cosmic timet) u0& t . We will see that
the u0& t̃ vacuum bears the same relation tou0& t vacuum as
that between the exponential vacuumu0&s defined earlier and
the asymptotic in vacuumu0& t in the cosmological cases
above.

E. Exponential scaling: A kinematic viewpoint

Starting from special relativity, assuming that two coordi-
nate systemsS5(t,r ) and S̃5( t̃ , r̃ ) ~these are not the black
hole coordinates! coincide at the origin, so the initial vacuum
of S̃ is the same as the RW vacuum, but the final vacuum in
S̃ is the GH vacuum. The two systems are related by the
following conditions:

~ i! r̃ 5a~ t !r , ~2.23!

~ ii ! a~ t !5eHt, ~2.24!

~ iii ! H r̃ 5Har5ȧr 5b, ~2.25!

~ iv!
a~ t̃ !

a~ t !
5g5

1

A12b2
. ~2.26!

The meaning of these conditions is explained in@28#, which
uses this example to illustrate the existence of exponential
scaling in all cases which report thermal radiance. The two
systems are related by a scale transformation~i!, in this case,
an exponential scaling~ii ! such that an observer inS̃ is seen
as receding fromS with a velocity ofb, with H the redshift
or Hubble parameter~iii !, and a Lorentz factorg ~iv!. Con-
dition ~iv! is called relativistic exponential transformation
@28#, which plays a central role in the understanding of the
Hawking effect in terms of scaling concepts@24,25,34#. With
these correspondences, it is not difficult to see the analogy
with the cosmological particle creation cases studied before.
The initial ~asymptotic in! vacuumu0& t defined with respect
to t time here~or h,t time in the earlier examples! and the
vacuumu0& t̃ defined in the exponentially receding systemS̃
bear the same relation. It is no surprise that the modulus of

the ratio between the Bogolubov coefficients have the same
form characteristic of a thermal spectrum~2.10!, but with
r,s replaced byH. @One can find explicit calculation of
thermal particle creation in Eq.~33! of @33#, using Bogol-
ubov transformations replacingR by our H21.# The Hawk-
ing temperature for the de Sitter universe is given by

kBTdS5
H

2p
. ~2.27!

Once the relation between the de Sitter universe~which be-
longs to the class of spacetimes which show the Hawking-
Unruh effect!, and that of some general cosmological space-
times @with specific scale functions such as in Eqs.~2.7!,
~2.13!, and ~2.20!# is established, it is easy to generalize to
the black hole and accelerated detector cases.

III. THERMAL RADIANCE
IN THE PARKER-BERGER MODEL

We now use the influence functional formalism~see, e.g.,
@21#! to investigate particle creation in the Parker-Berger
model @13,14#. The line element is given by

ds25a6dt22a2(
i

~dxi !2, ~3.1!

where

a4~t!511ert. ~3.2!

We consider the action of a massless, minimally coupled real
scalar fieldf, which forms an environment acting upon a
detector coupled to this field at some point in space. The
field can be decomposed into a collection of oscillators of
time-dependent frequency. Using the influence functional
formalism, we can determine the effect of such an environ-
ment on the detector, which is also modeled by an oscillator.

To do this we calculate the noisen and dissipationm
produced by the field. These are given by

z[n1 im5E
0

`

dkI~k,s,s8!X~s!X* ~s8!, ~3.3!

where I is the spectral density describing the system/
environment interaction, andX is a sum of Bogolubov coef-
ficients satisfying the classical equation of motion for the
field oscillators. First we decompose the field into its modes;
the Lagrangian density is

L~x!5A2g

2
f ,mf ,m5

1

2Ff ,t
2 2a4(

i
~f ,i !

2G . ~3.4!

In terms of normal modes the Lagrangian becomes

L~t!5 (
k,s56

1

2
@~qk

s
,t!

22a4k2~qk
s!2#. ~3.5!

We see then that the bath can be described as a set of oscil-
lators with mass and frequency

m51, v25a4k2. ~3.6!
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Now as was already mentioned,X satisfies the classical
equation of motion for an oscillator with the given param-
eters, and being a sum of Bogolubov coefficients, its initial
values are predetermined. So we need to solve

X9~t!1k2~11ert!X50, ~3.7!

with initial conditions

X~t0!51, X8~t0!52 ik. ~3.8!

With a change of variablesz5 ln(2k/r)1rt/2 we find the
solutions in terms of the Bessel functions:

X~t!5c1J2ik/rS 2k

r
ert/2D1c2J22ik/rS 2k

r
ert/2D . ~3.9!

To fix the constantsc1 ,c2 consider that the initial time is
t0→2`; however, the complex index Bessel functions os-
cillate infinitely often as their arguments approach zero, and
so for now we leavet0 unspecified. In that case we can
calculate2 c1 and c2; the final expression forX becomes,
with

f ~t![
2k

r
ert/2,

and Bessel indices labeled byn[2ik/r:

X~t!5
pk

r
csch

2pk

r H iert0/2U Jn„f ~t!… J2n„f ~t!…

Jn8„f ~t0!… J2n8 „f ~t0!…
U

2U Jn„f ~t!… J2n„f ~t!…

Jn„f ~t0!… J2n„f ~t0!…
UJ . ~3.10!

In the limiting case oft→` (t0→2`) we can use first
order and asymptotic expressions forJ and J8 to write
~which defines the phasesa andb)

Jn„f ~t0!….Asinh2pk/r

2pk/r
eia~k!,

Jn8„f ~t0!….e2rt0/2Asinh2pk/r

2pk/r
eib~k!,

Jn„f ~t!….A 2

pz
cosS f ~t!2

np

2
2

p

4 D . ~3.11!

In evaluatingX(t)X* (t8) we obtain various products of the
Bessel functions with their derivatives~note: Jn* 5J2n); in
particular we need

b2a5argGS 11
2ik

r D2argGS 2ik

r D
5arg

2ik

r
5

p

2
providedk50. ~3.12!

Also, when calculating the Bessel products, there arise sines
and cosines with argumentf (t)1 f (t8)[2k/r(ert/2

1ert8/2); when t→` and we ultimately integrate overk,
these terms will not contribute to the integral and so can be
discarded. Changing to sum and difference variables defined
by

S[~t1t8!/2, D[t2t8 ~3.13!

we finally obtain

z5e2rS/2E
0

`

dkI~k,t,t8!Fcos
2k

r
~ert/22ert8/2!coth

2pk

r

2 isin
2k

r
~ert/22ert8/2!G . ~3.14!

We can now equatez with the standard form

z5E
0

`

dkIe f f~k,S!@C~k,S!coskD2 isinkD#, ~3.15!

whereI eff is the effective spectral density andC is the noise
spectrum, both to be determined.C affects only the noise
kernel. We can always writez in the way of Eq.~3.15! since
n is even inD while m is odd. By equating the real and
imaginary parts of the two forms ofz and Fourier inverting,
we obtain

I effC5
1

pE2`

`

dDcoskDn~S,D!,

I eff52
1

pE2`

`

dDsinkDm~S,D!. ~3.16!

It can be seen that the two functionsI eff and C encode the
same information as the noise and dissipation of the environ-
ment. They are useful in that they can be used to make an
easy comparison between, on the one hand, the noise and
dissipation produced by the environment we wish to study,
and on the other hand, the noise and dissipation produced by
another environment that we know something about, specifi-
cally, a bath of static oscillators. Because such a bath is
characterized by its temperature for a given coupling, if we
can show that, for example, the noise and dissipation of our
chosen environment behave in the same way as those of a
static oscillator bath~or a perturbation of such a bath!, then
our environment will have equivalent effects as such a bath.
For a thermal bath of static oscillators each in a coherent
state,C5cothk/2T. We will show that in many near-thermal
cases studied below,C does have the form of a coth plus
perturbations. From this one can deduce the temperature cor-
rection of the radiation seen by the detector.

The expressions in Eq.~3.16! will be used throughout this
paper to calculateC for the various cases of induced radi-
ance that we consider. In order to use these we need to cal-
culate the dissipation and noise,m andn.

We first evaluatem as given by Eq.~3.14!; substituting it
into Eq.~3.16! will then give us the effective spectral density
I eff(k,S). Define

2To calculate these coefficients the wronskian ofJ2ik/r andJ22ik/r

is needed; note that there is a misprint in Gradshteyn and Ryzhik
Sec. 8.474: the relevant quantity should be22/pzsinnp.
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s[
2

r
~ers/22ers8/2!5

4

r
erS/2sinh

rD

4
. ~3.17!

To proceed, we need to specify a form for the spectral den-
sity. This has been calculated in@21#, and in 311 dimensions
it is

I ~k,s,s8!5
c2k

4p2 , ~3.18!

wherec is the coupling strength of the detector to the field.
Then from Eq.~3.14! we have

m52
c2

4p2 e2rS/2E
0

`

dkksinsk5
c2

4p2 e2rS/2pd8~s!,

~3.19!

where the last result follows from the discussion in@35#.
Substituting this form form into Eq.~3.16! gives the follow-
ing result:

I eff~k,S!5
c2k

4p2 e23rS/2. ~3.20!

Evaluating the noise kerneln is a more complicated affair.
From Eq.~3.14! we write

n5
c2

4p2 e2rS/2E
0

`

dkkcosskcoth
2pk

r

5
c2

4p2 e2rS/2F d

ds
P~1/s!1

1

s2 2
r2

16
csch2

rs

4 G ,
~3.21!

where again the last integral has been calculated in@35#.
Upon substituting this into Eq.~3.16! we obtain

C~k,S!5
erS

pkE2`

`

dDcoskD
d

ds
P~1/s!

1
r2

16pkE2`

`

dDcoskDFcsch2
rD

4

2erScsch2S erS/2sinh
rD

4 D G . ~3.22!

The first integral can be done by parts to get

E
2`

`

dDcoskD
d

ds
P~1/s!5E

2`

`

ds
dD

ds
coskD

d

ds
P~1/s!

52PVE
2`

` dD

s

d

dDFdD

ds
coskD G

5
4pk

r
coth

2pk

r
. ~3.23!

The second integral in Eq.~3.22! does not appear to be ex-
pressible in terms of known functions. Call itB(k,r,S),

B~k,r,S!52E
0

`

dDcoskDFcsch2
rD

4

2erScsch2S erS/2sinh
rD

4 D G ; ~3.24!

Then we have

C~k,r,S!5erSF4

r
coth

2pk

r
1

r2

16pk
e2rSB~k,r,S!G .

~3.25!

The functionB tends to zero for largek ~by the Riemann-
Lebesgue lemma!, and attains a maximum atk50 ~since the
cos term stops oscillating there!. However, numerical work
shows that this maximum value increases roughly witherS

which means that on first glance the second term in the
brackets does not necessarily vanish at late times (S→`).
So we need to examine the value ofB at k50 more closely,
to see precisely how it changes withS. To this end we can
considerB(0,r,S) as a function oferS and analyze its con-
cavity, i.e., with x[erS we need]2B/]x2. Differentiating
twice under the integral sign gives an integrand which is
everywhere negative, and so we conclude that]2B/]x2,0,
which means thatB as a function ofx is everywhere concave
down. ButB increases withx, and thusB/x[e2rSB→0 as
S→`. In that case the second term in the brackets gives no
contribution in the large time limit.

Finally, from Eq.~3.15! we can writez in a form which
reveals the thermal nature of the detected radiation:

z5E
0

`

dkIeff~k,S!F4erS

r
coth

2pk

r
coskD2 isinkD G .

~3.26!

The temperature of the radiation is then

kBT5
r

4p
. ~3.27!

Inspection of Eq.~3.14! suggests that an alternative time
variable can be chosen:

t5
2

r
ert/2. ~3.28!

The metric becomes

ds25
4a6

r2t2 dt22a2(
i

~dxi !2 ~3.29!

with

a4511
r2t2

4
. ~3.30!

Again following the previous formalism, we arrive at a de-
scription of the environment field in terms of oscillators, now
with time-dependent mass and frequency:

m5
rt

2
, v25

4a4k2

r2t2 . ~3.31!
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Solutions forX in this case are the same as before, and the
calculations carry through in much the same way. With now
S and D defined as mean and differences oft and t8 we
again arrive at thermal forms for the noise and dissipation:

z5e2rS/2E
0

`

dkI~k,s,s8!FcoskDcoth
2pk

r
2 isinkD G

~3.32!

and the detected temperature is the same as Eq.~3.27!.

IV. INFLATIONARY UNIVERSE

A. Eternal versus slow-roll inflation

In this section we consider particle creation of a massless
conformally coupled quantum scalar field at zero tempera-
ture in a spatially flat Friedmann-Robertson-Walker~FRW!
universe undergoing a near-exponential~inflationary! expan-
sion. The example of de Sitter space which corresponds to
the exact exponential case has been treated in@21#. Here we
first solve for a general scale factora(t) using a slightly
different language from@21#. We then specialize to a space-
time ~the Brandenberger-Kahn metric@18#! which has initial
de Sitter behavior but with scale factor tending toward a
constant at late~cosmic! times. We can also define a param-
eterh which measures the departure from an exact exponen-
tial expansion.

As before we first derive the noise and dissipation kernels
by calculatingX, the solution to the equation of motion of
the field modes. The spatially-flat FRW metric is

ds25dt22a2~ t !(
i

~dxi !2. ~4.1!

The Lagrangian density of the scalar field is

L~x!5
a3

2 F Ḟ22
1

a2(
i

F ,i
22S ȧ2

a2
1

ä

aD F2G , ~4.2!

which leads to a Lagrangian in terms of the normal modesqk

L~ t !5 (
k,s56

a3

2 F ~ q̇k
s!212

ȧ

a
q̇k

sqk
s2S k2

a2 2
ȧ2

a2D ~qk
s!2G .

~4.3!

@We have added a surface term 1/a3d/dt(ȧa2q2) to the La-
grangian. See@21# for the rationale.# The classical equation
of motion, and hence that ofX, is

Ẍ13
ȧ

a
Ẋ1S k2

a2 1
ȧ2

a2
1

ä

aD X50 ~4.4!

with initial conditions

X~ t i !51, X8~ t i !52 ik2a8~ t i !. ~4.5!

We find that

X~ t !5
1

a
e2 ikh, ~4.6!

whereh is the usual conformal time.
Now we use Eq.~3.3! to construct the influence kernelz,

which contains the noise and dissipation kernels. From@21#
the spectral density for the field is

I ~k,t,t8!5
«2k

4p2 . ~4.7!

For the rest of this section we introduce, for brevity,

x~S,D![a~ t !1a~ t8!, y~S,D![h~ t !2h~ t8!. ~4.8!

Then we find, from Eq.~3.3!,

z[n1 im5
1

a~ t !a~ t8!

«2

4p2E
0

`

ke2 ikydk

5
1

a~ t !a~ t8!

«2

4p2F d

dy
P~1/y!1 ipd8~y!G . ~4.9!

As before we calculate the spectrum and temperature by
Fourier transformingz using Eq.~3.16!. ~Note thatS,D are
defined in terms of cosmic timet.! We change the variable of
integration fromD to y, using

dD

dy
5

2a~ t !a~ t8!

x
~4.10!

to write

I eff52
«2

2p2E
2`

`

d8~y!
sinkD

x
dy5

«2k

4p2 ~4.11!

independently of the value ofa(t). The temperature now
follows from Eq.~3.16!: again we change to ay integration
by parts, remembering thatD50⇔y50. We obtain

I effC5
«2

4p3E
2`

` coskD

a~ t !a~ t8!

dD

dy

d

dy
P~1/y!dy, ~4.12!

which leads to

C52
4

pkE0

`F d

dD

coskD

x GdD

y
. ~4.13!

This equation is the central result of this section, in that it
allows us to compute the spectrum corresponding to an arbi-
trary scale factor. For example, in the de Sitter case with
a5eHt we have

x52eHScosh
HD

2
, y5

2e2HS

H
sinh

HD

2
, ~4.14!

which when substituted into Eq.~4.13! gives

C5coth
pk

H
. ~4.15!

So for this case we can infer the temperature seen to be

kBT5
H

2p
, ~4.16!
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as was calculated with a slightly different approach in@21#.
As an aside, we note that from the above analysis for a

general scale factor, the noise kernel is

n52
«2

p3E
0

`

dkcoskDE
0

`du

y

d

duF cosku

a~ t !1a~ t8!G ~4.17!

with dissipation

m5
«2d8~D!

4p
. ~4.18!

An often-used alternative to our principal part prescription is
the introduction of a cutoff in the*0

` expressions; unfortu-
nately following this procedure does not lead to tractable
integrals even for the relatively simple de Sitter case. Note
that in Eq.~4.13! for the temperature in the general case, we
are essentially dealing with products ofa and h, and it is
therefore not surprising that for de Sitter expansion, where
a}1/h, Eq. ~4.13! can be evaluated analytically. For other
forms of a, even very simple ones, Eq.~4.13! becomes very
complicated.

B. Near-exponential expansion

We now consider the case of a near de Sitter universe
with a scale factor composed of the usual de Sitter one to-
gether with a factor that decays exponentially. We show that
the spectrum seen is near thermal tending toward thermal at
late times.

We start by considering the Hubble parameter to have a
constant value~characterizing de Sitter space! plus an expo-
nentially decaying term:

H~ t !5H0~11ae2bH0t!, ~4.19!

and from this our aim is to calculateC using Eq.~4.13!. The
scale factor results from integratingH, and is

a~ t !5expS H0t2
a

b
e2bH0tD . ~4.20!

We define the parameterh which measures the departure
from exact exponential expansion to be

h~ t ![
Ḣ~ t !

H~ t !2
→2abe2bH0t ~4.21!

asbt→`, and as we might expect it is exponentially decay-
ing at late times.

To proceed, we indicate the de Sitter quantities by a sub-
script zero as well as writing

S̃[H0S, D̃[H0D. ~4.22!

Then immediately we have, from Eq.~4.14!,

x052eS̃cosh
D̃

2
, y05

2e2S̃

H
sinh

D̃

2
. ~4.23!

We wish to perturb these by using the new scale factor.
Suppose we define perturbationsf 1 , f 2 by writing

x5x0@11 f 1~S̃,D̃ !#, y5y0@11 f 2~S̃,D̃ !#. ~4.24!

We first have

x5a~ t !1a~ t8!5eH0t2~a/b!e2bH0t
1eH0t82~a/b!e2bH0t8

,

~4.25!

which in the late time limit can be approximated by

x.x02
2a

b
e~12b!S

˜
cosh

~12b!D̃

2
, ~4.26!

which yields f 1:

f 15
2a

b
e2bS

˜
cosh

~12b!D̃

2

cosh
D̃

2

. ~4.27!

Next we write

y5h~ t !2h~ t8!5E
t8

t dt

a~ t !
5E

t8

t

expS 2H0t1
a

b
e2bH0tD ,

~4.28!

and by making the same late time approximation as forx we
get

y.E
t8

t

e2H0tS 11
a

b
e2bH0tD

5y01
2ae2~11b!S

˜

b~11b!H0
sinh

~11b!D̃

2
. ~4.29!

This leads to

f 25
ae2bS

˜

b~11b!

sinh
~11b!D̃

2

sinh
D̃

2

. ~4.30!

Note that at late timesf 1 , f 2 tend to zero. In that case to
calculateC we write Eq.~4.13! in the form

C.2
4

pkE0

` d

dDFcoskD

x0
~12 f 1!G12 f 2

y0
dD, ~4.31!

and so write, to first order inf 1 , f 2:
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~4.32!

EvaluatingDC is lengthy but straightforward so we merely
write the answer in integral form:

DC5
H0

2ae2bS
˜

2pkb E
0

`

dDF 22k

H0~11b!

sinh
~11b!D̃

2
sinkD

sinh2
D̃

2
cosh

D̃

2

2
1

11b

sinh
~11b!D̃

2
coskD

cosh2
D̃

2
sinh

D̃

2

1
2k

H0

cosh
~12b!D̃

2
sinkD

cosh2
D̃

2
sinh

D̃

2

2

~12b!sinh
~12b!D̃

2
coskD

cosh2
D̃

2
sinh

D̃

2

1

2cosh
~12b!D̃

2
coskD

cosh3
D̃

2

G . ~4.33!

The important point is that the factore2bS
˜

ensures that this
perturbation to the thermal spectrum dies off exponentially at
late times.

C. Brandenberger-Kahn model

We are now in a position to derive the functionC(k,S)
for the Brandenberger-Kahn model. In this case,

a~ t !5e~2H0 /a!~12e2at/2!, ~4.34!

with H0 ,a constants. Ast tends toward zero and infinity,
a(t) tends towardeHt and e2H/a, respectively. The Hubble
expansion function is

H~ t ![
ȧ

a
5H0e2at/2, ~4.35!

and the parameter which measures the departure from exact
exponential expansionh(t) is

h[
Ḣ~ t !

H~ t !2
52

a

2H0
eat/252

a

2H0
1O~a2t2!. ~4.36!

We assume thatuatu!1. Equation~4.13! is much too diffi-
cult to evaluate analytically here, but we can get some in-
sight by calculating it as a first order correction inh to the de
Sitter case.

At this point, we also mention an alternative perturbation
of de Sitter space, given by the scale factor

a~ t !5e*0
t H~ t !dt, ~4.37!

which describes a solution of the vacuum Einstein equations
with a time-dependent cosmological constantL(t)53H2(t).
One may expandH(t) in a power series aboutt50. Defining
h as in Eq.~4.36!, this form of perturbation turns out to be
identical to the Brandenberger-Kahn model to first order in
h. We have, to first order,

H~ t !5H01H0
2ht, ~4.38!

the correspondence betweenh and a being given by Eq.
~4.36!. We will therefore calculate the detector response for
the Brandenberger-Kahn model only, keeping in mind its
correspondence with the model mentioned above.

Again definef 1 , f 2 ~now with h included! such that

x5x01h f1~D!, y5y01h f2~D!. ~4.39!

The corrections are then written as

f 1~D!5eS
˜F S S̃21

D̃2

4
D cosh

D̃

2
1S̃D̃sinh

D̃

2
G ,

f 2~D!52
e2S

˜

H0
F S S̃21

D̃2

4
12S̃12D sinh

D̃

2

2~S̃11!D̃cosh
D̃

2
G . ~4.40!

After some computation we obtain the spectrum to be

C~k,S!5~11hG1!coth
pk

H0
, ~4.41!

a form which shows its approximately thermal nature, with
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G152

S̃
pk

H0

sinh
pk

H0

1
S̃

cosh
pk

H0

1~S̃11!

3F 12S tanh
pk

H0
D 2

pE0

`
usin

2ku

H0

sinh2u
duG . ~4.42!

As a function ofk/H0 the integral looks much like tan21,
tending top/2 ask/H0→`.

In the low frequency limit the departure from a thermal
spectrum is, toO(k2):

hG1.hF S̃112~S̃12/3!S pk

H0
D 2G;hS̃. ~4.43!

Note that we stipulated thatuhS̃u;uatu!1, so thathG1 re-
mains small as time passes. In the high frequency limit the
departure is given by

hG1→22hS̃e2pk/H0S pk

H0
21D , ~4.44!

which again remains small, and is especially close to zero for
high frequencies.

V. DISCUSSION

This paper continues the theme of our previous papers on
the stochastic approach to particle creation@21–23,29# with
focus on two main points:~1! A unified approachto treat
thermal particle creation from both spacetimes with and
without event horizons based on the interpretation proposed
by one of us@24,25# that the thermal radiance can be viewed
as quantum noise of the field amplified by an exponential
scale transformation in these systems~in specific vacuum
states! @28#. In contradistinction to viewing these as global,
geometric effects, this viewpoint emphasizes the kinematic
effect of scaling on the vacuum.~2! An approximation

schemeto show that near-thermal radiation is emitted from
systems in spacetimes undergoing near-exponential expan-
sion. We wish to demonstrate the relative ease in construct-
ing perturbation theory using the stochastic approach.

The emphasis of the statistical field theory is on how
quantum and thermal fluctuations of the matter fields are
affected by different kinematic or dynamic conditions. For
particle creation in spacetimes with event horizons, such as
for an accelerated observer and black holes, this method de-
rives the Hawking and Unruh effect@20,21# from the view-
point of amplification of quantum noise and exploits the
fluctuation-dissipation relation which measures the balance
between fluctuations in the detector and dissipation in the
field @22#. For spacetimes without event horizons, such as
that in near-uniformly accelerated detectors or collapsing
masses@23#, and wide classes of cosmological models, some
studied here, one can describe them with a single parameter
measuring the deviation from uniformity~acceleration! or
stationarity ~expansion! which enters in the near-thermal
spectrum of particle creation in all these systems. The fact
that we can understand all thermal radiation generating pro-
cesses in these two apparently distinct classes of~cosmologi-
cal and black hole! spacetimes@28,29# and be able to calcu-
late near-thermal radiance in this and earlier papers testifies
to the conceptual unity and methodological capability of this
approach.
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