87 research outputs found

    Are Bacterio- and Phytoplankton Community Compositions Related in Lakes Differing in Their Cyanobacteria Contribution and Physico-Chemical Properties?

    Get PDF
    Bacterioplankton community composition has become the center of research attention in recent years. Bacteria associated with toxic cyanobacteria blooms have attracted considerable interest. However, little is known about the environmental factors driving the bacteria community, including the impact of invasive cyanobacteria. Therefore, our aim has been to determine the relationships between heterotrophic bacteria and phytoplankton community composition across 24 Polish lakes with different contributions of cyanobacteria including the invasive species Raphidiopsis raciborskii. This analysis revealed that cyanobacteria were present in 16 lakes, while R. raciborskii occurred in 14 lakes. Our results show that bacteria communities differed between lakes dominated by cyanobacteria and lakes with minor contributions of cyanobacteria but did not differ between lakes with R. raciborskii and other lakes. Physical factors, including water and Secchi depth, were the major drivers of bacteria and phytoplankton community composition. However, in lakes dominated by cyanobacteria, bacterial community composition was also influenced by biotic factors such as the amount of R. raciborskii, chlorophyll-a and total phytoplankton biomass. Thus, our study provides novel evidence on the influence of environmental factors and R. raciborskii on lake bacteria communities

    The success of the cyanobacterium Cylindrospermopsis raciborskii in freshwaters is enhanced by the combined effects of light intensity and temperature

    Get PDF
    Toxic cyanobacterial blooms in freshwaters are thought to be a consequence of the combined effects of anthropogenic eutrophication and climate change. It is expected that climate change will affect water mixing regimes that alter the water transparency and ultimately the light environment for phytoplankton. Blooms of the potentially toxic cyanobacterium Cylindrospermopsis raciborskii are expanding from tropical towards temperate regions. Several hypotheses have been proposed to explain this expansion, including an increase in water temperature due to climate change and the high phenotypic plasticity of the species that allows it to exploit different light environments. We performed an analysis based on eight lakes in tropical, subtropical and temperate regions to examine the distribution and abundance of C. raciborskii in relation to water temperature and transparency. We then conducted a series of short-term factorial experiments that combined three temperatures and two light intensity levels using C. raciborskii cultures alone and in interaction with another cyanobacterium to identify its growth capacity. Our results from the field, in contrast to predictions, showed no differences in dominance (>40% to the total biovolume) of C. raciborskii between climate regions. C. raciborskii was able to dominate the phytoplankton in a wide range of light environments (euphotic zone=1.5 to 5 m, euphotic zone/mixing zone ratio 1.5). Moreover, C. raciborskii was capable of dominating the phytoplankton at low temperatures (<15°C). Our experimental results showed that C. raciborskii growing in interaction was enhanced by the increase of the temperature and light intensity. C. raciborskii growth in high light intensities and at a wide range of temperatures, suggests that any advantage that this species may derive from climate change that favors its dominance in the phytoplankton is likely due to changes in the light environment rather than changes in temperature. Predictive models that consider only temperature as a drive factor can therefore fail in predicting the expansion of this potentially toxic cyanobacterium

    Strategia kształcenia wyprzedzającego

    Get PDF
    Strategia kształcenia wyprzedzającego (SKW) była przedmiotem trzyletniego projektu „Kolegium Śniadeckich – innowacyjny program nauczania przedmiotów przyrodniczych”, realizowanego w partnerstwie między Uniwersytetem im. Adama Mickiewicza w Poznaniu a Ogólnopolską Fundacją Edukacji Komputerowej (Oddział w Poznaniu), współfinansowanego ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Naczelnym efektem projektu była modyfikacja metodyki nauczania przedmiotów przyrodniczych oraz matematyki, podniesienie poziomu nauczania tych przedmiotów, a także zwiększenie uczniowskiego zainteresowania nimi. Dynamiczny rozwój technologii informacyjno-komunikacyjnych oraz aktywność uczniów w tej dziedzinie skłoniły autorów do uwzględnienia tego stanu w projektowaniu zmian w nauczaniu przedmiotów przyrodniczych

    Cyanobacteria and cyanotoxins in Polish freshwater bodies.

    Get PDF
    In this work, the authors examined the presence of cyanobacteria and cyanotoxins in 21 samples collected from fresh water bodies located in 5 provinces in Poland: Lublin (2), Podlasie (1), Pomerania (6), Warmia-Masuria (1) and Wielkopolska (11). In addition, to determine the general pattern of geographical distribution, frequency of cyanobacteria occurrence, and cyanotoxins production, the published data from 238 fresh water bodies in Poland were reviewed. On the basis of these collected results, we concluded that Planktothrix, Aphanizomenon, Microcystis and Dolichospermum were dominant. The general pattern in geographical distribution of the identified cyanobacterial genera was typical of other eutrophic waters in Europe. The production of cyanotoxins was revealed in 18 (86%) of the 21 samples analyzed in the present work and in 74 (75%) of the 98 total water bodies for which the presence of toxins had been examined. Among the 24 detected microcystin variants, [Asp3]MC-RR was most common. These results can be verified when more data from the less explored water bodies in the southern and eastern parts of Poland are available.The authors would like to acknowledge the European Cooperation in Science and Technology, COST Action ES 1105 "CYANOCOST- Cyanobacterial blooms and toxins in water resources: Occurrence, impacts and management" for adding value to this study through networking and knowledge sharing with European experts and researchers in the field.42435837
    corecore