252 research outputs found

    Casimir operators of centrally extended l-conformal Galilei algebra

    Get PDF
    The full set of Casimir elements of the centrally extended l-conformal Galilei algebra is found in simple and tractable form.Comment: 5 page

    Subarctic ecosystem responses to climate, catchment and permafrost dynamics in the Holocene

    Get PDF
    This thesis assesses aspects of the wetland development, permafrost dynamics and associated changes in carbon and nutrient cycling of the Stordalen Mire in northern Sweden. Various ecological and biogeochemical analyses of one peat and two lake sediment sequences were conducted, including analyses of organic matter and carbonate content, mosses, diatoms, testate amoebae, pigments, carbon and nitrogen and their stable isotopes, near infrared spectroscopy and biogenic silica. Results revealed that the structural development of the mire occurred during the later part of the Holocene. Peat inception was dated at 4700 cal BP and onset of organic sedimentation in two adjacent lake basins occurred at 3400 and 2650 cal BP. Fen peat accumulated until minimum 2800 cal BP, and after c.2650 cal BP an early permafrost aggradation phase likely caused frost heave and significant changes in the wetland structure and hydrology. Peat is largely missing in the examined core between 2800 and 1350 cal BP, reflecting either environmental stress causing a decrease/cease of peat accumulation and/or erosion of previously formed peat. An increased content of redeposited peat in one of the lakes after c.2100 cal BP, points to mire erosion caused by permafrost decay. A high nutrient/productivity layer in the other lake between 1900 and 1800 cal BP may have been related to the same event in the mire. Sedge peat accumulated from 1350 cal BP. Renewed permafrost aggradation is indicated indirectly around 700 cal BP and directly 120 cal BP from changes in peat building vegetation. Fen peat and transitions between dominating mire vegetation communities were characterized by frequent diatoms and high nutrient concentrations. Permafrost phases were associated with poor fen and bog formation, and thus considerably more acidic conditions in the mire as compared to pH conditions when richer fen communities dominated. This development resulted in more acidic runoff to adjacent lakes and affected carbonate precipitation there. Further, poor catchment retention of nutrients during poor fen/bog stages, probably caused increased fluxes of nutrients out of the system, stimulating primary lake productivity in adjacent lakes. Increased lake productivity in turn caused increased oxygen consumption for decomposition at the lake bottom, and thus anoxic conditions. Thereby an increased flux of phosphorous from the sediment triggered a state of self-sustained eutrophication during two centuries, preceding the onset of 20th century permafrost thaw. Proxy indications of peat surface moisture conditions and lake-water TOC concentration dynamics during the last 100 years were reconstructed by means of testate amoebae assemblages in peat and near infrared spectroscopy and the carbon isotopic composition of lake sediment bulk organic matter. These results revealed a close connection with decadal trends of total annual and summer precipitation as well as single years with anomalously high precipitation, especially in the late summer. The data could thus not be directly linked to monitored trends in active layer thickness

    Chemical Heterogeneities along the South Atlantic Mid-Ocean-Ridge (5-11°S): Shallow or Deep Recycling of Ocean Crust?

    Get PDF
    Between 5° and 11°S, the Mid-Atlantic Ridge displays anomalous crustal thickness and geochemical compositions, thought to be related to either small scale upper mantle heterogeneities or a weak, diffuse mantle plume. We report new high precision trace element and Sr, Nd and Pb (DS) isotope data for 72 ridge axis samples and 9 off-axis seamount samples along with U–Th–Ra disequilibria data for off axis seamounts at c. 9.7°S. At least four distinct components are needed to explain the geochemical variations along the ridge: 1) a common depleted (D-MORB-like) component near and north of 4.8–7.6°S, 2) an enriched component upwelling beneath Ascension Island and the northern A1 ridge segment (segment numbers ascend from north to south), 3) an enriched component upwelling beneath the A2 ridge segment, and 4) an enriched component upwelling beneath the line of seamounts east of the A3 segment and the A3 and A4 segments. The A1 and the A3+A4 segment lavas form well-defined mixing arrays from Ascension Island and the A3 seamounts respectively to the depleted D-MORB component. We propose that the enriched components represent different packages of subducted ocean crust and/or ocean island basalt (OIB) type volcanic islands and seamounts that have either been recycled through 1) the shallow mantle, upwelling passively beneath the ridge system or 2) the deep mantle via an actively upwelling heterogeneous mantle plume that interacts with the ridge system

    Combined Trace Element and Pb-Nd-Sr-O Isotope Evidence for Recycled Oceanic Crust (Upper and Lower) in the Iceland Mantle Plume

    Get PDF
    We present the results of a comprehensive major element, trace element and Sr-Nd-Pb-O isotopic study of post-glacial volcanic rocks from the Neovolcanic zones on Iceland. The rocks studied range in composition from picrites and tholeiites, which dominate in the main rift systems, to transitional and alkalic basalts confined to the off-rift and propagating rift systems. There are good correlations of rock types with geochemical enrichment parameters, such as La/Sm and La/Yb ratios, and with long-term radiogenic tracers, such as Sr-Nd-Pb isotope ratios, indicating a long-lived enrichment/depletion history of the source region. 87Sr/86Sr vs 143Nd/144Nd defines a negative array. Pb isotopes define well-correlated positive arrays on both 206Pb/204Pb vs 207Pb/204Pb and 208Pb/204Pb diagrams, indicating mixing of at least two major components: an enriched component represented by the alkali basalts and a depleted component represented by the picrites. In combined Sr-Nd-Pb isotopic space the individual rift systems define coherent mixing arrays with slightly different compositions. The enriched component has radiogenic Pb (206Pb/204Pb > 19·3) and very similar geochemistry to HIMU-type ocean island basalts (OIB). We ascribe this endmember to recycling of hydrothermally altered upper basaltic oceanic crust. The depleted component that is sampled by the picrites has unradiogenic Pb (206Pb/204Pb < 17·8), but geochemical signatures distinct from that of normal mid-ocean ridge basalt (N-MORB). Highly depleted tholeiites and picrites have positive anomalies in mantle-normalized trace element diagrams for Ba, Sr, and Eu (and in some cases also for K, Ti and P), negative anomalies for Hf and Zr, and low δ18Oolivine values (4·6-5·0‰) below the normal mantle range. All of these features are internally correlated, and we, therefore, interpret them to reflect source characteristics and attribute them to recycled lower gabbroic oceanic crust. Regional compositional differences exist for the depleted component. In SW Iceland it has distinctly higher Nb/U (∼68) and more radiogenic 206Pb/204Pb ratios (18·28-18·88) compared with the NE rift (Nb/U ∼47; 206Pb/204Pb = 18·07-18·47). These geochemical differences suggest that different packages of recycled oceanic lithosphere exist beneath each rift. A third and minor component with relatively high 87Sr/86Sr and 207Pb/204Pb is found in a single volcano in SE Iceland (Öræfajökull volcano), indicating the involvement of recycled sediments in the source locally. The three plume components form an integral part of ancient recycled oceanic lithosphere. The slope in the uranogenic Pb diagram indicates a recycling age of about 1·5 Ga with time-integrated Th/U ratios of 3·01. Surprisingly, there is little evidence for the involvement of North Atlantic N-MORB source mantle, as would be expected from the interaction of the Iceland plume and the surrounding asthenosphere in form of plume-ridge interaction. The preferential sampling of the enriched and depleted components in the off-rift and main rift systems, respectively, can be explained by differences in the geometry of the melting regions. In the off-rift areas, melting columns are truncated deeper and thus are shorter, which leads to preferential melting of the enriched component, as this starts melting deeper than the depleted component. In contrast, melting proceeds to shallower depths beneath the main rifts. The longer melting columns also produce significant amounts of melt from the more refractory (lower crustal/lithospheric) componen

    238U-230Th-226Ra Disequilibria Constraints on the Magmatic Evolution of the Cumbre Vieja Volcanics on La Palma, Canary Islands

    Get PDF
    A suite of 48 samples, including both historical and prehistoric lavas and some plutonic rocks, have been analysed from the Cumbre Vieja rift, La Palma, Canary Islands. Additionally, mineral–melt partition coefficients have been measured for clinopyroxene, plagioclase, amphibole, titanite and apatite in selected rocks. The lavas range from basanite to phonolite (SiO2 = 41·2–57·5 wt % and MgO = 10–0·8 wt %) in composition and form coherent, curvilinear major and trace element arrays in variation diagrams, irrespective of eruption age. The mafic lavas have typical ocean island incompatible trace element patterns and Sr, Nd and Pb isotope compositions show little variation but have a HIMU-type character. Generation of the parental magmas is inferred to have involved ∼4% dynamic melting of a garnet lherzolite source that may have previously been metasomatized by melts derived from a recycled mafic component containing residual phlogopite. The major process of differentiation to phonotephrite involved fractional crystallization of basanitic magmas that evolved along the same liquid line of descent under similar pressure–temperature conditions. Numerical simulations using the MELTS algorithm suggest that this occurred across a temperature interval from c. 1320 to 950°C at 400 MPa and an oxygen fugacity equivalent to quartz–fayalite–magnetite (QFM), with an initial H2O content of 0·3 wt %. The later stages of differentiation (<5 wt % MgO) were dominated by mixing with partial melts of young syenites formed from earlier magma batches. All of the lavas are characterized by 230Th and 226Ra excesses and (230Th/238U) decreases with decreasing Nb/U and increasing SiO2, with no accompanying change in (226Ra/230Th). To explain the observations, we propose a model in which there was a significant role for amphibole, and more importantly accessory titanite, in decre'asing Nb/U, Ce/Pb and Th/U ratios and increasing or buffering (226Ra/230Th) ratios during the later stages of differentiation and magma mixing. These processes all occurred over a few millennia in small magma batches that were repeatedly emplaced within the mid-crust of the Cumbre Vieja rift system prior to rapid transport to the surface

    Remnants of Mesoarchaean oceanic crust in the Tartoq Group, South-West Greenland

    Get PDF
    The Tartoq Group is located in the Sermiligaarsuk fjord region in South-West Greenland in an area of approximately 20 × 50 km (Fig. 1). The Tartoq Group consists of several discrete, fault-bound blocks of metavolcanic rocks, surrounded by Archaean tonalite-trondhjemite-granodioritetype (TTG) gneisses. A zircon age of 2996.3 ± 5.9 Ma of a TTG intrusion provides a minimum age for the formation of the Tartoq Group (Fig. 2). The metavolcanic rocks probably show the lowest degree of metamorphism found anywhere in the Archaean craton of Greenland. Here we present a new model for the origin of the metavolcanic rocks of the Tartoq Group based on geochemical, metamorphic and structural data. The samples used for this study were collected by the Geological Survey of Denmark and Greenland (GEUS) in 2009 and 2010. The study is part of a joint project between the Greenland Bureau of Minerals and Petroleum and GEUS on the mineral potential of south-western Greenland
    corecore