155 research outputs found

    An unbiased in vitro screen for activating epidermal growth factor receptor mutations

    Get PDF
    Cancer tissues harbor thousands of mutations, and a given oncogene may be mutated at hundreds of sites. Yet, only a few of these mutations have been functionally tested. Here, we describe an unbiased platform for the functional characterization of thousands of variants of a single receptor tyrosine kinase (RTK) gene in a single assay. Our in vitro screen for activating mutations (iSCREAM) platform enabled rapid analysis of mutations conferring gain-of-function RTK activity promoting clonal growth. The screening strategy included a somatic model of cancer evolution and utilized a library of 7,216 randomly mutated epidermal growth factor receptor (EGFR) single-nucleotide variants, that were tested in murine lymphoid Ba/F3 cells. These cells depend on exogenous interleukin-3 (IL-3) for growth, but this dependency can be compensated by ectopic EGFR overexpression, enabling selection for gain-of-function EGFR mutants. Analysis of the enriched mutants revealed EGFR A702V, a novel activating variant that structurally stabilized the EGFR kinase dimer interface and conferred sensitivity to kinase inhibition by afatinib. As proof of concept for our approach, we recapitulated clinical observations and identified the EGFR L858R as the major enriched EGFR variant. Altogether iSCREAM enabled robust enrichment of 21 variants from a total of 7,216 EGFR mutations. These findings indicate the power of this screening platform for unbiased identification of activating RTK variants that are enriched under selection pressure in a model of cancer heterogeneity and evolution

    High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines.

    Get PDF
    Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control. Here we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM revealed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo

    Recent advances in the genetics of SDH-related paraganglioma and pheochromocytoma

    Get PDF
    The last 10 years have seen enormous progress in the field of paraganglioma and pheochromocytoma genetics. The identification of the first gene related to paraganglioma, SDHD, encoding a subunit of mitochondrial succinate dehydrogenase (SDH), was quickly followed by the identification of mutations in SDHC and SDHB. Very recently several new SDH-related genes have been discovered. The SDHAF2 gene encodes an SDH co-factor related to the function of the SDHA subunit, and is currently exclusively associated with head and neck paragangliomas. SDHA itself has now also been identified as a paraganglioma gene, with the recent identification of the first mutation in a patient with extra-adrenal paraganglioma. Another SDH-related co-factor, SDHAF1, is not currently known to be a tumor suppressor, but may shed some light on the mechanisms of tumorigenesis. An entirely novel gene associated with adrenal pheochromocytoma, TMEM127, suggests that other new paraganglioma susceptibility genes may await discovery. In addition to these recent discoveries, new techniques related to mutation analysis, including genetic analysis algorithms, SDHB immunohistochemistry, and deletion analysis by MLPA have improved the efficiency and accuracy of genetic analysis. However, many intriguing questions remain, such as the striking differences in the clinical phenotype of genes that encode proteins with an apparently very close functional relationship, and the lack of expression of SDHD and SDHAF2 mutations when inherited via the maternal line. Little is still known of the origins and causes of truly sporadic tumors, and the role of oxygen in the relationships between high-altitude, familial and truly sporadic paragangliomas remains to be elucidated

    The FH mutation database: an online database of fumarate hydratase mutations involved in the MCUL (HLRCC) tumor syndrome and congenital fumarase deficiency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fumarate hydratase (HGNC approved gene symbol – <it>FH</it>), also known as fumarase, is an enzyme of the tricarboxylic acid (TCA) cycle, involved in fundamental cellular energy production. First described by Zinn <it>et al </it>in 1986, deficiency of FH results in early onset, severe encephalopathy. In 2002, the Multiple Leiomyoma Consortium identified heterozygous germline mutations of <it>FH </it>in patients with multiple cutaneous and uterine leiomyomas, (MCUL: OMIM 150800). In some families renal cell cancer also forms a component of the complex and as such has been described as hereditary leiomyomatosis and renal cell cancer (HLRCC: OMIM 605839). The identification of FH as a tumor suppressor was an unexpected finding and following the identification of subunits of succinate dehydrogenase in 2000 and 2001, was only the second description of the involvement of an enzyme of intermediary metabolism in tumorigenesis.</p> <p>Description</p> <p>The <it>FH </it>mutation database is a part of the TCA cycle gene mutation database (formerly the succinate dehydrogenase gene mutation database) and is based on the Leiden Open (source) Variation Database (LOVD) system. The variants included in the database were derived from the published literature and annotated to conform to current mutation nomenclature. The <it>FH </it>database applies HGVS nomenclature guidelines, and will assist researchers in applying these guidelines when directly submitting new sequence variants online. Since the first molecular characterization of an <it>FH </it>mutation by Bourgeron <it>et al </it>in 1994, a series of reports of both FH deficiency patients and patients with MCUL/HLRRC have described 107 variants, of which 93 are thought to be pathogenic. The most common type of mutation is missense (57%), followed by frameshifts & nonsense (27%), and diverse deletions, insertions and duplications. Here we introduce an online database detailing all reported <it>FH </it>sequence variants.</p> <p>Conclusion</p> <p>The <it>FH </it>mutation database strives to systematically unify all current genetic knowledge of <it>FH </it>variants. We believe that this knowledge will assist clinical geneticists and treating physicians when advising patients and their families, will provide a rapid and convenient resource for research scientists, and may eventually assist in gaining novel insights into FH and its related clinical syndromes.</p

    DNA copy number loss and allelic imbalance at 2p16 in lung cancer associated with asbestos exposure

    Get PDF
    Five to seven percent of lung tumours are estimated to occur because of occupational asbestos exposure. Using cDNA microarrays, we have earlier detected asbestos exposure-related genomic regions in lung cancer. The region at 2p was one of those that differed most between asbestos-exposed and non-exposed patients. Now, we evaluated genomic alterations at 2p22.1-p16.1 as a possible marker for asbestos exposure. Lung tumours from 205 patients with pulmonary asbestos fibre counts from 0 to 570 million fibres per gram of dry lung, were studied by fluorescence in situ hybridisation (FISH) for DNA copy number alterations (CNA). The prevalence of loss at 2p16, shown by three different FISH probes, was significantly increased in lung tumours of asbestos-exposed patients compared with non-exposed (P=0.05). In addition, a low copy number loss at 2p16 associated significantly with high-level asbestos exposure (P=0.02). Furthermore, 27 of the tumours were studied for allelic imbalances (AI) at 2p22.1–p16.1 using 14 microsatellite markers and also AI at 2p16 was related to asbestos exposure (P=0.003). Our results suggest that alterations at 2p16 combined with other markers could be useful in diagnosing asbestos-related lung cancer

    The skeleton of the staghorn coral Acropora millepora: molecular and structural characterization

    Get PDF
    15 pagesInternational audienceThe scleractinian coral Acropora millepora is one of the most studied species from the Great Barrier Reef. This species has been used to understand evolutionary, immune and developmental processes in cnidarians. It has also been subject of several ecological studies in order to elucidate reef responses to environmental changes such as temperature rise and ocean acidification (OA). In these contexts, several nucleic acid resources were made available. When combined to a recent proteomic analysis of the coral skeletal organic matrix (SOM), they enabled the identification of several skeletal matrix proteins, making A. millepora into an emerging model for biomineralization studies. Here we describe the skeletal microstructure of A. millepora skeleton, together with a functional and biochemical characterization of its occluded SOM that focuses on the protein and saccharidic moieties. The skeletal matrix proteins show a large range of isoelectric points, compositional patterns and signatures. Besides secreted proteins, there are a significant number of proteins with membrane attachment sites such as transmembrane domains and GPI anchors as well as proteins with integrin binding sites. These features show that the skeletal proteins must have strong adhesion properties in order to function in the calcifying space. Moreover this data suggest a molecular connection between the calcifying epithelium and the skeletal tissue during biocalcification. In terms of sugar moieties, the enrichment of the SOM in arabinose is striking, and the monosaccharide composition exhibits the same signature as that of mucus of acroporid corals. Finally, we observe that the interaction of the acetic acid soluble SOM on the morphology of in vitro grown CaCO3 crystals is very pronounced when compared with the calcifying matrices of some mollusks. In light of these results, we wish to commend Acropora millepora as a model for biocalcification studies in scleractinians, from molecular and structural viewpoints

    Cytoplasmic location of factor-inhibiting hypoxia-inducible factor is associated with an enhanced hypoxic response and a shorter survival in invasive breast cancer

    Get PDF
    INTRODUCTION: Hypoxia-inducible factor (HIF)-1alpha levels in invasive breast carcinoma have been shown to be an adverse prognostic indicator. Cellular HIF-1alpha activity is regulated by factor-inhibiting hypoxia-inducible factor 1 (FIH-1). In hypoxia, FIH-1 hydroxylation of Asn803 within the C-terminal transactivation domain does not occur and HIF-1alpha forms a fully active transcriptional complex. The present study investigates the role of FIH-1 in invasive breast carcinoma and its correlation with hypoxia. METHODS: Microarrayed tissue cores from 295 invasive carcinomas were stained for FIH-1, for HIF-1alpha and for carbonic anhydrase 9. FIH-1 expression was correlated with standard clinicopathological parameters and with the expression of the surrogate hypoxic markers HIF-1alpha and carbonic anhydrase 9. RESULTS: FIH-1 was positive in 239/295 (81%) tumours, 42/295 (14%) exclusively in the nucleus and 54/295 (18%) exclusively in the cytoplasm. Exclusive nuclear FIH-1 expression was significantly inversely associated with tumour grade (P = 0.02) and risk of recurrence (P = 0.04), whereas exclusive cytoplasmic FIH-1 was significantly positively associated with tumour grade (P = 0.004) and carbonic anhydrase 9 expression (P = 0.02). Patients with tumours that excluded FIH-1 from the nucleus had a significantly shorter survival compared with those with exclusive nuclear expression (P = 0.02). Cytoplasmic FIH-1 expression was also an independent poor prognostic factor for disease-free survival. CONCLUSION: FIH-1 is widely expressed in invasive breast carcinoma. As with other HIF regulators, its association between cellular compartmentalization and the hypoxic response and survival suggests that tumour regulation of FIH-1 is an additional important mechanism for HIF pathway activation
    corecore